Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "short-term memory" wg kryterium: Temat


Wyświetlanie 1-16 z 16
Tytuł:
Adaptive changes in human memory: a literature review
Autorzy:
Sabiniewicz, Agnieszka Laura
Sorokowski, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/954177.pdf
Data publikacji:
2017
Wydawca:
Fundacja Pro Scientia Publica
Tematy:
adaptation
environmental changes
long-term memory
short-term memory
working memory
sensory memory
Opis:
The paper contains a review of the literature concerning memory abilities and human senses performance under different environmental circumstances. A number of studies indicated that environment has a significant impact on human senses functioning. It can affect it in a mechanical way, by a chronic exposure to potentially harmful substances or processes in different work environments. Also, some cognitive abilities that have evolved to perform evolutionary essential functions lost their importance because of the change of environment impact. Moreover, training can be a source of improvement of both human senses and cognitive abilities, as well. That might suggest that, while using, under different environmental circumstances different cognitive abilities develop. We take into a particular consideration human memory and its role, show current studies in this field and suggest new research directions.
Źródło:
Journal of Education Culture and Society; 2017, 8, 1; 79-87
2081-1640
Pojawia się w:
Journal of Education Culture and Society
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Task conditions and short-term memory search: two-phase model of STM search
Autorzy:
Orzechowski, Jarosław
Nęcka, Edward
Balas, Robert
Powiązania:
https://bibliotekanauki.pl/articles/430621.pdf
Data publikacji:
2016-04-01
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
short-term memory
STM retrieval
STM search
Sternberg paradigm
familiarity
recollection
Opis:
Short-term memory (STM) search, as investigated within the Sternberg paradigm, is usually described as exhaustive rather than self-terminated, although the debate concerning these issues is still hot. We report three experiments employing a modified Sternberg paradigm and show that whether STM search is exhaustive or self-terminated depends on task conditions. Specifically, STM search self-terminates as soon as a positive match is found, whereas exhaustive search occurs when the STM content does not contain a searched item. Additionally, we show that task conditions influence whether familiarity- or recollection-based strategies dominate STM search performance. Namely, when speeding up the tempo of stimuli presentation increases the task demands, people use familiarity-based retrieval more often, which results in faster but less accurate recognition judgments. We conclude that STM search processes flexibly adapt to current task conditions and finally propose two-phase model of STM search.
Źródło:
Polish Psychological Bulletin; 2016, 47, 1; 12-20
0079-2993
Pojawia się w:
Polish Psychological Bulletin
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interval Prediction of Remaining Useful Life based on Convolutional Auto-Encode and Lower Upper Bound Estimation
Autorzy:
Lyu, Yi
Zhang, Qichen
Chen, Aiguo
Wen, Zhenfei
Powiązania:
https://bibliotekanauki.pl/articles/24200839.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
remaining useful life
lower upper bound estimation
Long Short-Term Memory
prediction interval
Opis:
Deep learning is widely used in remaining useful life (RUL) prediction because it does not require prior knowledge and has strong nonlinear fitting ability. However, most of the existing prediction methods are point prediction. In practical engineering applications, confidence interval of RUL prediction is more important for maintenance strategies. This paper proposes an interval prediction model based on Long Short-Term Memory (LSTM) and lower upper bound estimation (LUBE) for RUL prediction. First, convolutional auto-encode network is used to encode the multi-dimensional sensor data into one-dimensional features, which can well represent the main degradation trend. Then, the features are input into the prediction framework composed of LSTM and LUBE for RUL interval prediction, which effectively solves the defect that the traditional LUBE network cannot analyze the internal time dependence of time series. In the experiment section, a case study is conducted using the turbofan engine data set CMAPSS, and the advantage is validated by carrying out a comparison with other methods.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 165811
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel method of health indicator construction and remaining useful life prediction based on deep learning
Autorzy:
Zhan, Xianbiao
Liu, Zixuan
Yan, Hao
Wu, Zhenghao
Guo, Chiming
Jia, Xisheng
Powiązania:
https://bibliotekanauki.pl/articles/27312791.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
stacked sparse autoencoder
health indicator
long short-term memory network
remaining useful life prediction
Opis:
The construction of health indicators (HI) for traditional deep learning requires human training labels and poor interpretability. This paper proposes an HI construction method based on Stacked Sparse Autoencoder (SSAE) and combines SSAE with Long short-term memory (LSTM) network to predict the remaining useful life (RUL). Extracting features from a single domain may result in insufficient feature extraction and cannot comprehensively reflect the degradation status information of mechanical equipment. In order to solve the problem, this article extracts features from time domain, frequency domain, and time-frequency domain to construct a comprehensive original feature set. Based on monotonicity, trendiness, and robustness, the most sensitive features from the original feature set are selected and put into the SSAE network to construct HI for state partitioning, and then LSTM is used for RUL prediction. By comparing with the existing methods, it is proved that the prediction effect of the proposed method in this paper is satisfied.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 4; art. no. 171374
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep Belief Neural Networks and Bidirectional Long-Short Term Memory Hybrid for Speech Recognition
Autorzy:
Brocki, Ł.
Marasek, K.
Powiązania:
https://bibliotekanauki.pl/articles/177625.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
deep belief neural networks
long-short term memory
bidirectional recurrent neural networks
speech recognition
large vocabulary continuous speech recognition
Opis:
This paper describes a Deep Belief Neural Network (DBNN) and Bidirectional Long-Short Term Memory (LSTM) hybrid used as an acoustic model for Speech Recognition. It was demonstrated by many independent researchers that DBNNs exhibit superior performance to other known machine learning frameworks in terms of speech recognition accuracy. Their superiority comes from the fact that these are deep learning networks. However, a trained DBNN is simply a feed-forward network with no internal memory, unlike Recurrent Neural Networks (RNNs) which are Turing complete and do posses internal memory, thus allowing them to make use of longer context. In this paper, an experiment is performed to make a hybrid of a DBNN with an advanced bidirectional RNN used to process its output. Results show that the use of the new DBNN-BLSTM hybrid as the acoustic model for the Large Vocabulary Continuous Speech Recognition (LVCSR) increases word recognition accuracy. However, the new model has many parameters and in some cases it may suffer performance issues in real-time applications.
Źródło:
Archives of Acoustics; 2015, 40, 2; 191-195
0137-5075
Pojawia się w:
Archives of Acoustics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Detection and Localization of Audio Event for Home Surveillance Using CRNN
Autorzy:
Suruthhi, V. S.
Smita, V.
Rolant Gini, J.
Ramachandran, K. I.
Powiązania:
https://bibliotekanauki.pl/articles/2055274.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
convolutional recurrent neural network
CRNN
gated recurrent unit
GRU
long short-term memory
LSTM
sound event localization and detection
SELD
Opis:
Safety and security have been a prime priority in people’s lives, and having a surveillance system at home keeps people and their property more secured. In this paper, an audio surveillance system has been proposed that does both the detection and localization of the audio or sound events. The combined task of detecting and localizing the audio events is known as Sound Event Localization and Detection (SELD). The SELD in this work is executed through Convolutional Recurrent Neural Network (CRNN) architecture. CRNN is a stacked layer of convolutional neural network (CNN), recurrent neural network (RNN) and fully connected neural network (FNN). The CRNN takes multichannel audio as input, extracts features and does the detection and localization of the input audio events in parallel. The SELD results obtained by CRNN with the gated recurrent unit (GRU) and with long short-term memory (LSTM) unit are compared and discussed in this paper. The SELD results of CRNN with LSTM unit gives 75% F1 score and 82.8% frame recall for one overlapping sound. Therefore, the proposed audio surveillance system that uses LSTM unit produces better detection and overall performance for one overlapping sound.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 4; 735--741
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting future values of time series using the lstm network on the example of currencies and WIG20 companies
Prognozowanie przyszłych wartości szeregów czasowych z wykorzystaniem sieci lstm na przykładzie kursów walut i spółek WIG20
Autorzy:
Mróz, Bartosz
Nowicki, Filip
Powiązania:
https://bibliotekanauki.pl/articles/2016294.pdf
Data publikacji:
2020
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
recurrent neural network
RNN
gated recurrent unit
GRU
long short-term memory
LSTM
rekurencyjna sieć neuronowa
blok rekurencyjny
pamięć długookresowa
Opis:
The article presents a comparison of the RNN, GRU and LSTM networks in predicting future values of time series on the example of currencies and listed companies. The stages of creating an application which is a implementation of the analyzed issue were also shown – the selection of networks, technologies, selection of optimal network parameters. Additionally, two conducted experiments were discussed. The first was to predict the next values of WIG20 companies, exchange rates and cryptocurrencies. The second was based on investments in cryptocurrencies guided solely by the predictions of artificial intelligence. This was to check whether the investments guided by the predictions of such a program have a chance of effective earnings. The discussion of the results of the experiment includes an analysis of various interesting phenomena that occurred during its duration and a comprehensive presentation of the relatively high efficiency of the proposed solution, along with all kinds of graphs and comparisons with real data. The difficulties that occurred during the experiments, such as coronavirus or socio-economic events, such as riots in the USA, were also analyzed. Finally, elements were proposed that should be improved or included in future versions of the solution – taking into account world events, market anomalies and the use of supervised learning.
W artykule przedstawiono porównanie sieci RNN, GRU i LSTM w przewidywaniu przyszłych wartości szeregów czasowych na przykładzie walut i spółek giełdowych. Przedstawiono również etapy tworzenia aplikacji będącej realizacją analizowanego zagadnienia – dobór sieci, technologii, dobór optymalnych parametrów sieci. Dodatkowo omówiono dwa przeprowadzone eksperymenty. Pierwszym było przewidywanie kolejnych wartości spółek z WIG20, kursów walut i kryptowalut. Drugi opierał się na inwestycjach w kryptowaluty, kierując się wyłącznie przewidywaniami sztucznej inteligencji. Miało to na celu sprawdzenie, czy inwestowanie na podstawie przewidywania takiego programu pozwala na efektywne zarobki. Omówienie wyników eksperymentu obejmuje analizę różnych ciekawych zjawisk, które wystąpiły w czasie jego trwania oraz kompleksowe przedstawienie relatywnie wysokiej skuteczności proponowanego rozwiązania wraz z wszelkiego rodzaju wykresami i porównaniami z rzeczywistymi danymi. Analizowano również trudności, które wystąpiły podczas eksperymentów, takie jak koronawirus, wydarzenia społeczno-gospodarcze czy zamieszki w USA. Na koniec zaproponowano elementy, które należałoby ulepszyć lub uwzględnić w przyszłych wersjach rozwiązania, uwzględniając wydarzenia na świecie, anomalie rynkowe oraz wykorzystanie uczenia się nadzorowanego.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2020, 24; 13-30
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Tool wear condition monitoring in milling process based on data fusion enhanced long short-term memory network under different cutting conditions
Autorzy:
Zheng, Guoxiao
Sun, Weifang
Zhang, Hao
Zhou, Yuqing
Gao, Chen
Powiązania:
https://bibliotekanauki.pl/articles/2038054.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
tool wear condition monitoring
empirical mode decomposition
variational mode decomposition
fourier synchro squeezed transform
neighborhood component analysis
long short-term memory network
Opis:
Tool wear condition monitoring (TCM) is essential for milling process to ensure the machining quality, and the long short-term memory network (LSTM) is a good choice for predicting tool wear value. However, the robustness of LSTM- based method is poor when cutting condition changes. A novel method based on data fusion enhanced LSTM is proposed to estimate tool wear value under different cutting conditions. Firstly, vibration time series signal collected from milling process are transformed to feature space through empirical mode decomposition, variational mode decomposition and fourier synchro squeezed transform. And then few feature series are selected by neighborhood component analysis to reduce dimension of the signal features. Finally, these selected feature series are input to train the bidirectional LSTM network and estimate tool wear value. Applications of the proposed method to milling TCM experiments demonstrate it outperforms significantly SVR- based and RNN- based methods under different cutting conditions.
Źródło:
Eksploatacja i Niezawodność; 2021, 23, 4; 612-618
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Missing Precipitation Data Estimation Using Long Short-Term Memory Deep Neural Networks
Autorzy:
Djerbouai, Salim
Powiązania:
https://bibliotekanauki.pl/articles/2086428.pdf
Data publikacji:
2022
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
Hodna
K'sob basin
missing precipitation data
long short-term memory
CCWM
coefficient of correlation weighting method
IDWM
inverse distance weighting method
Opis:
Due to the spatiotemporal variability of precipitation and the complexity of physical processes involved, missing precipitation data estimation remains as a significant problem. Algeria, like other countries in the world, is affected by this problem. In the present paper, Long Short-Term Memory (LSTM) deep neural Networks model was tested to estimate missing monthly precipitation data. The application was presented for the K'sob basin, Algeria. In the present paper, the optimal architecture of LSTM model was adjusted by trial-and-error-procedure. The LSTM model was compared with the most widely used classical methods including inverse distance weighting method (IDWM) and the coefficient of correlation weighting method (CCWM). Finally, it was concluded that the LSTM model performed better than the other methods.
Źródło:
Journal of Ecological Engineering; 2022, 23, 5; 216--225
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis and Forecasting of the Primary Energy Consumption in Poland Using Deep Learning
Analiza i prognozowanie zużycia energii pierwotnej w Polsce z wykorzystaniem technik głębokiego uczenia
Autorzy:
Manowska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/318083.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Przeróbki Kopalin
Tematy:
primary energy consumption
deep learning methods
long short-term memory
deep neural network
konsumpcja energii pierwotnej
metody głębokiego uczenia
sztuczne sieci neuronowe
LSTM
Opis:
Consumption of fossil energy resources were increased dramatically, due to the economic and population growth. In turn, the consumption of fossil resources causes depletion of resources and contributes to environmental pollution. The European Union's "climate neutrality" initiative requires effective energy management from the member states. By this is meant a resource-efficient and competitive economy in which there is no greenhouse gas emission and where economic growth is decoupled from resource consumption. The article analyzes the level of primary energy consumption in Poland. It was examined whether a 23% drop in energy consumption could be achieved in 2030 compared to the base year and according with energy efficiency assumptions. A methodology for forecasting primary energy consumption based on deep neural networks, in particular on Long Short Term Memory (LSTM) algorithms was also presented.
Zużycie kopalnych surowców energetycznych wzrasta, a wzrost ten jest skorelowany ze wzrostem ludności i rozwojem gospodarczym. Z kolei zużycie kopalnych surowców energetycznych powoduje wyczerpywanie się zasobów i przyczynia się do zanieczyszczenia środowiska. Inicjatywa Unii Europejskiej "neutralność klimatyczna" wymaga od państw członkowskich efektywnego zarządzania energią. Przez co rozumie się zasobooszczędną i konkurencyjną gospodarką, w której nie ma emisji netto gazów cieplarnianych i gdzie wzrost gospodarczy jest oddzielony od zużycia zasobów. W artykule przeanalizowano poziom zużycia energii pierwotnej w Polsce. Zbadano, czy w roku 2030 uda się osiągnąć 23% spadek konsumpcji energii w odniesieniu do roku bazowego, zgodnie z przyjętymi założeniami o efektywności energetycznej. Przedstawiono również metodologię prognozowania zużycia energii pierwotnej opartą na głębokich sieciach neuronowych, w szczególności na algorytmach Long Short Term Memory (LSTM).
Źródło:
Inżynieria Mineralna; 2020, 1, 1; 217-222
1640-4920
Pojawia się w:
Inżynieria Mineralna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An optimized parallel implementation of non-iteratively trained recurrent neural networks
Autorzy:
El Zini, Julia
Rizk, Yara
Awad, Mariette
Powiązania:
https://bibliotekanauki.pl/articles/2031147.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
GPU implementation
parallelization
Recurrent Neural Network
RNN
Long-short Term Memory
LSTM
Gated Recurrent Unit
GRU
Extreme Learning Machines
ELM
non-iterative training
Opis:
Recurrent neural networks (RNN) have been successfully applied to various sequential decision-making tasks, natural language processing applications, and time-series predictions. Such networks are usually trained through back-propagation through time (BPTT) which is prohibitively expensive, especially when the length of the time dependencies and the number of hidden neurons increase. To reduce the training time, extreme learning machines (ELMs) have been recently applied to RNN training, reaching a 99% speedup on some applications. Due to its non-iterative nature, ELM training, when parallelized, has the potential to reach higher speedups than BPTT. In this work, we present Opt-PR-ELM, an optimized parallel RNN training algorithm based on ELM that takes advantage of the GPU shared memory and of parallel QR factorization algorithms to efficiently reach optimal solutions. The theoretical analysis of the proposed algorithm is presented on six RNN architectures, including LSTM and GRU, and its performance is empirically tested on ten time-series prediction applications. Opt- PR-ELM is shown to reach up to 461 times speedup over its sequential counterpart and to require up to 20x less time to train than parallel BPTT. Such high speedups over new generation CPUs are extremely crucial in real-time applications and IoT environments.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 1; 33-50
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A deep hybrid model for human-computer interaction using dynamic hand gesture recognition
Autorzy:
Ramalingam, Brindha
Angappan, Geetha
Powiązania:
https://bibliotekanauki.pl/articles/38702766.pdf
Data publikacji:
2023
Wydawca:
Instytut Podstawowych Problemów Techniki PAN
Tematy:
dynamic hand gesture
human-computer interaction
long short-term memory
convolutional neural network
dynamiczny gest ręki
interakcja człowiek-komputer
pamięć krótkotrwała
konwolucyjna sieć neuronowa
Opis:
Dynamic hand gestures attract great interest and are utilized in different fields. Amongthese, man-machine interaction is an interesting area that makes use of the hand to providea natural way of interaction between them. A dynamic hand gesture recognition system isproposed in this paper, which helps to perform control operations in applications such asmusic players, video games, etc. The key motivation of this research is to provide a simple, touch-free system for effortless and faster human-computer interaction (HCI). As thisproposed model employs dynamic hand gestures, HCI is achieved by building a modelwith a convolutional neural network (CNN) and long short-term memory (LSTM) net-works. CNN helps in extracting important features from the images and LSTM helpsto extract the motion information between the frames. Various models are constructedby differing the LSTM and CNN layers. The proposed system is tested on an existing EgoGesture dataset that has several classes of gestures from which the dynamic gesturesare utilized. This dataset is used as it has more data with a complex background, actionsperformed with varying speeds, lighting conditions, etc. This proposed hand gesture recognition system attained an accuracy of 93%, which is better than other existing systemssubject to certain limitations.
Źródło:
Computer Assisted Methods in Engineering and Science; 2023, 30, 3; 263-276
2299-3649
Pojawia się w:
Computer Assisted Methods in Engineering and Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie zabawki w terapii autyzmu. Wybrane aspekty
The Meaning of a Toy in Autism Therapy
Autorzy:
Olimpia Zmuda, Ewa
Szurek, Marzena Maria
Powiązania:
https://bibliotekanauki.pl/articles/478965.pdf
Data publikacji:
2018
Wydawca:
Akademia Ignatianum w Krakowie
Tematy:
zabawka
autyzm
terapia
zachowania społeczne
motywacja
rozumienie emocji
pamięć krótkotrwała
logiczne myślenie
toy
autism
therapy
social behavior
motivation
understanding of emotions
short-term memory
logical thinking
Opis:
Artykuł jest szkicem naukowego namysłu nad zabawką rozumianą jako narzędzie terapeutyczne. Przedmiotem rozważań uczyniłyśmy pracę terapeuty-logopedy z dziećmi autystycznymi w wieku przedszkolnym, koncentrując się na terapii kompetencji społecznych i rozumienia emocji, kształceniu językowym, nauce logicznego myślenia i ćwiczeniu pamięci, a także na aspekcie motywacyjnym zabawki. Celem artykułu jest ukazanie funkcji zabawki w pracy z dzieckiem autystycznym. Należy go traktować jako pewnego rodzaju poradnik na temat możliwości wykorzystania zabawki głównie w gabinecie logopedycznym (bo został napisany z perspektywy logopedów-praktyków), aczkolwiek skierowany jest on do wszystkich osób pracujących z dziećmi – również psychologów, pedagogów, opiekunów i rodziców. Zaproponowane użycia zabawek są stosowane i weryfikowane w terapii opartej na metodzie indywidualnej pracy z dzieckiem zaburzonym, a metodą zbierania materiałów badawczych do artykułu była obserwacja uczestnicząca. Do istotniejszych wniosków z poczynionych obserwacji należą: - zabawki spełniają ważną rolę w terapii zachowań społecznych, jako że cały proces terapeutyczny zmierza do kształtowania kompetencji - społecznych, a zastosowanie zabawki daje dodatkowo możliwość kontynuowania zabawy poza sytuacją gabinetową; - zabawka jest doskonałym narzędziem wspomagającym progresję mowy, ułatwia chociażby wprowadzanie i utrwalanie kolejnych kategorii gramatycznych; - zabawki inspirują wspólne aktywności, co ma znaczenie wysoce terapeutyczne; - zabawki motywują dziecko do aktywnego udziału w terapii.
The article is a sketch constituting a fragment of scientific consideration of a toy understood as a therapeutic tool. The subject of deliberations is a work of speech therapist with autistic children at the pre-school age, with special focus on the therapy of social competences, understanding emotions, learning a language and logical thinking, practicing memory, as well motivational aspects of a toy. The purpose of the article is to show the function of a toy in autistic child therapy. Therefore, the text should be read as a kind of guide on the possibility of using the toy mainly in the speech-therapist’s office (as it has been written from the speech therapist’s point of view), however, it is addressed to all people working with children – including psychologists, pedagogues, carers and parents. The suggested usage of toys is applied and verified in therapy based on the method of individual work with a disturbed child, and the participatory observation method was used to collect research materials for the article. Significant conclusions from the observations include: - toys play an important role in the therapy of social behavior, as the whole therapeutic process aims at shaping social competences, and the use of toys also gives the opportunity to continue playing outside the speech-therapist’s office - a toy is a great tool supporting speech development, it facilitates the introduction and consolidation of grammatical categories - toys inspire group activities, which have highly therapeutic functions - toys motivate the child to actively participate in therapy.
Źródło:
Edukacja Elementarna w Teorii i Praktyce; 2018, 13, 3(49); 173-187
1896-2327
Pojawia się w:
Edukacja Elementarna w Teorii i Praktyce
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Deep learning based Tamil Parts of Speech (POS) tagger
Autorzy:
Anbukkarasi, S.
Varadhaganapathy, S.
Powiązania:
https://bibliotekanauki.pl/articles/2086879.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
POS tagging
part of speech
deep learning
natural language processing
BiLSTM
Bi-directional long short term memory
tagowanie POS
części mowy
uczenie głębokie
przetwarzanie języka naturalnego
Opis:
This paper addresses the problem of part of speech (POS) tagging for the Tamil language, which is low resourced and agglutinative. POS tagging is the process of assigning syntactic categories for the words in a sentence. This is the preliminary step for many of the Natural Language Processing (NLP) tasks. For this work, various sequential deep learning models such as recurrent neural network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU) and Bi-directional Long Short-Term Memory (Bi-LSTM) were used at the word level. For evaluating the model, the performance metrics such as precision, recall, F1-score and accuracy were used. Further, a tag set of 32 tags and 225 000 tagged Tamil words was utilized for training. To find the appropriate hidden state, the hidden states were varied as 4, 16, 32 and 64, and the models were trained. The experiments indicated that the increase in hidden state improves the performance of the model. Among all the combinations, Bi-LSTM with 64 hidden states displayed the best accuracy (94%). For Tamil POS tagging, this is the initial attempt to be carried out using a deep learning model.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 6; e138820, 1--6
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Urban traffic crash analysis using deep learning techniques
Analiza kolizji w ruchu miejskim z wykorzystaniem technik głębokiego uczenia
Autorzy:
Sobhana, Mummaneni
Vemulapalli, Nihitha
Mendu, Gnana Siva Sai Venkatesh
Ginjupalli, Naga Deepika
Dodda, Pragathi
Subramanyam, Rayanoothala Bala Venkata
Powiązania:
https://bibliotekanauki.pl/articles/27315440.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
classification
gated recurrent unit
long-short term memory
multilayer perceptron
recurrent neural network
road accidents
klasyfikacja
pamięć długotrwała
pamięć krótkotrwała
perceptron wielowarstwowy
rekurencyjna sieć neuronowa
wypadki drogowe
Opis:
Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents.This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam,and Gandhinagar in Vijayawada(India)from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniquesare applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These modelsare trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
Liczba wypadków drogowych w Andhra Pradesh niepokojąco rośnie. W 2021 r. stan Andhra Pradesh odnotował 20% wzrost liczby wypadków drogowych. Niefortunna pozycja stanu, który zajmuje ósme miejsce pod względem liczby ofiar śmiertelnych, z 8946 ofiarami śmiertelnymiw 22311 wypadkach drogowych, podkreśla pilny charakter problemu. Znaczący wymiar finansowy dla ofiari ich rodziny podkreśla konieczność podjęcia skutecznych działań w celu ograniczenia liczby wypadków drogowych. W niniejszym badaniu zaproponowano system gromadzenia danych o wypadkachz regionów Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam i Gandhinagar w Vijayawada (India) w latach 2019–2021. Zbiór danych obejmuje ponad 12 000 rekordów danych o wypadkach. Techniki głębokiego uczenia są stosowane do klasyfikowania wagi wypadków drogowychna śmiertelne, poważne i ciężkie obrażenia. Procedura klasyfikacji wykorzystuje zaawansowane modele sieci neuronowych, w tymwielowarstwowy perceptron, pamięć długoterminową i krótkoterminową, rekurencyjną sieć neuronową i Gated Recurrent Unit. Modele te są trenowane na zebranych danych w celu dokładnego przewidywania wagi wypadków drogowych. Projekt ma wnieść istotny wkład w sugerowanie proaktywnych środków i polityk mających na celu zmniejszenie dotkliwości i częstotliwości wypadków drogowych w Andhra Pradesh.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 56--63
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the effects of L2 aptitude, phonological short-term memory, and L2 motivation on L2 listening performance
Autorzy:
Véliz-Campos, Mauricio
Cerda-Oñate, Karina
Biedroń, Adriana
Rojas-Barahona, Cristian A.
Veliz, Leonardo
Powiązania:
https://bibliotekanauki.pl/articles/52446730.pdf
Data publikacji:
2024
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu. Collegium Novum. Polskie Towarzystwo Neofilologiczne
Tematy:
L2 aptitude
phonetic coding ability
phonological short-term memory
L2MSS
L2 listening performance
zdolności do nauki języka
zdolność kodowania fonetycznego
fonologiczna pamięć krótkotrwała
system samomotywacji w języku obcym
umiejętność słuchania w języku obcym
Opis:
L2 learning is influenced by both individual learner variables and contextual factors. Contextual factors have been extensively researched, but although internal learner-specific variables have received attention, this has been to a lesser extent. Among these internal variables, L2 motivation and L2 aptitude are likely the most significant predictors of L2 learning progress and listening performance. This study explored the effects of (i) L2 motivation, following the L2 Motivational Self-System model; (ii) L2 aptitude; and (iii) phonological short-term memory (PSTM) on L2 listening performance. These variables combined have not yet been studied with reference to L2 listening. In this correlational study, a listening test was taken as a pre- and post-test in a sample of 104 Year 1 and Year 2 English language pre-service teachers from a Chilean University three months apart. L2 aptitude and PSTM measures were taken using the first two sections of the Modern Language Aptitude Test (MLAT) for the former variable, and a non-word repetition task for the latter. The results suggest that PSTM, but not L2 aptitude, predicted listening performance at time 2. Also, the results indicate that after adjusting for listening performance at time 1, the only motivational factor predicting listening performance at time 2 was learning experience.
Źródło:
Neofilolog; 2024, 63/1; 100-119
1429-2173
Pojawia się w:
Neofilolog
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-16 z 16

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies