Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "shale-gas" wg kryterium: Temat


Tytuł:
Wpływ obecności iłów, porowatości oraz nasycenia porów wodą i gazem na parametry sprężyste skał zbiornikowych określanych na podstawie teoretycznych modeli ośrodków porowatych i danych geofizyki wiertniczej
Effects of shale content, porosity and water- and gas-saturation in pores on elastic parameters of reservoir rocks based on theoretical models of porous media and well-logging data
Autorzy:
Bała, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074505.pdf
Data publikacji:
2007
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
nasycenie wodą
nasycenie gazem
prędkość fali P
prędkość fali S
współczynnik Poissona
skały zbiornikowe
P-wave velocity
S-wave velocity
elastic modulus
Poisson ratio
shale content
water saturation
gas saturation
Opis:
The paper describes effects of shale content, porosity and water- and gas saturation on elastic parameters of rocks. The analysis was based on theoretical relationships for porous media, known as the Biot-Gassmann's and Kuster and Toksöz's models, and on Raymer-Hunt-Gardner formulas. Well-logging data and results of the quantitative interpretation of well logs were also analysed. The relationships between P-wave and S-wave velocities and reservoir parameters may contribute to solving some problems associated with seismic interpretation of wave forms in Miocene gas deposits in the Carpathian Foredeep.
Źródło:
Przegląd Geologiczny; 2007, 55, 1; 46-53
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Perspektywy poszukiwań złóż gazu ziemnego w skałach ilastych (shale gas) oraz gazu ziemnego zamkniętego (tight gas) w Polsce
Potential for shale gas and tight gas exploration in Poland
Autorzy:
Poprawa, P.
Kiersnowski, H.
Powiązania:
https://bibliotekanauki.pl/articles/2063280.pdf
Data publikacji:
2008
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
niekonwencjonalne węglowodory
gaz w łupkach
gaz zamknięty
baseny sedymentacyjne
Polska
unconventional hydrocarbons
shale gas
tight gas
sedimentary basins
Polska
Opis:
Głównym obiektem, spełniającym kryteria decydujące o możliwości występowania gazu ziemnego w skałach ilastych, są utwory górnego ordowiku i syluru w basenie bałtyckim i basenie lubelsko-podlaskim. Kryteria takie częściowo spełniają również ilaste kompleksy w obrębie utworów dolnego karbonu w strefie wielkopolskiej (rejon monokliny przedsudeckiej). Niekonwencjonalne akumulacje gazu ziemnego w skałach ilasto-mułowcowych, aczkolwiek o bakteryjnej genezie, mogą występować również w mioceńskim zapadlisku przedkarpackim. Największe perspektywy dla poszukiwania złóż gazu ziemnego zamkniętego związane są z eolicznymi i fluwialnymi piaskowcami czerwonego spągowca, głównie w strefie NE monokliny przedsudeckiej. Akumulacje gazu ziemnego zamkniętego mogą występować również w piaskowcach kambryjskich na obszarze kratonu wschodnioeuropejskiego, środkowo- i górnodewońskich utworach węglanowych w basenie lubelskim, jak również w piaskowcach kredowych i paleogeńskich w głębiej pogrążonych partiach orogenu Karpat zewnętrznych. Utwory dolnego karbonu w strefie wielkopolskiej lokalnie spełniają warunki dla współwystępowania w profilu kompleksów drobnoklastycznych zawierających gaz w łupkach oraz kompleksów piaskowcowych zawierających gaz zamknięty.
The main target for shale gas exploration in Poland is the Upper Ordovician to Silurian black graptolitic shale at the East European Craton (Baltic Basin, Lublin-Podlasie Basin; Eastern and Northern Poland). Existence of such petroleum system is in this case confirmed by presence of gas shows. Locally criteria for shale gas exploration are meet by shales within the Lower Carboniferous section in Wielkopolska zone (region of Fore-Sudetic Monocline; Western and SW Poland). Unconventional accumulation of biogenic gas might exist within shales and mudstones of the Outer Carpathian Miocene Foredeep (SE Poland). The high potential for tight gas exploration is suggested for the Rotliegend eolian and fluvial sandstones, mainly in the region of NE Fore-Sudetic Monocline. Accumulations of tight gas might exist also in the Cambrian sandstones of the East European Craton, the Middle to Upper Devonian carbonates of the Lublin Basin, and also in the Cretaceous to Paleogene sandstones in the deep parts of the Outer Carpathian thrust belt (SE Poland). The Lower Carboniferous in Wielkopolska zone, composed of deep marine shales, mudstone and sandstone, might contain both shale and tight gas.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2008, 429; 145-152
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aktualny stan koncesji i użytkowań dla rozpoznania i udokumentowania zasobów niekonwencjonalnych złóż gazu ziemnego w Polsce (tzw. gaz z łupków – „shale gas” i „tight gas”
Current status of concessions and mining uses for recognition and documentation of unconventional natural gas deposits in Poland ("Shale Gas" and "Tight Gas")
Autorzy:
Kozieł, A.
Powiązania:
https://bibliotekanauki.pl/articles/283649.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
kopalina
złoże
poszukiwanie
rozpoznawanie
obszar górniczy
własność złóż kopalin
koncesja
użytkowanie górnicze
gaz niekonwencjonalny
gaz z łupków
gaz zamknięty
mine
mineral deposit
search
identification
mining area
mineral deposit ownership
concession
mining use
unconventional gas
shale gas
tight gas
Opis:
Autor prezentuje w opracowaniu stan koncesji i użytkowań górniczych dla rozpoznania i udokumentowania zasobów niekonwencjonalnych złóż gazu ziemnego w Polsce (tzw. gaz z łupków – „shale gas” i „tight gas”) na podstawie koncesji udzielonych dotychczas przez Ministerstwo Środowiska. Omówiono zakres udzielonych koncesji, tak co do aspektu rzeczowego, jak i ich warunków (czy też obowiązków i uprawnień) oraz użytkowań górniczych, a więc z punktu widzenia dwóch podstawowych instytucji prawa geologicznego kształtujących prawa i obowiązki przedsiębiorców – koncesjonariuszy tak na płaszczyźnie prawa publicznego (koncesja jako akt administracyjny, forma reglamentacji działalności, publicznoprawne uprawnienie podmiotowe), jak i ze względu na materię prawa prywatnego (umowa użytkowania górniczego, majątkowe prawo podmiotowe). Odrębnie zasygnalizowano również zagadnienia legislacji co do niektórych aspektów nowego prawa geologicznego i górniczego według Sprawozdania Komisji Nadzwyczajnej Druk Sejmowy nr 1696 z dnia 28 kwietnia 2010 r.
In the paper the author presents status of mining concessions and mining usufruct for recognize and documentation of unconventional natural gas deposits in Poland on the basis of concessions previously granted by the Ministry of Environment. The Author discusses the range of granted concessions, both in the material aspect and conditions of concessions (or the duties and rights) and operated mining usufructs, so from the perspective of two fundamental institutions of geological law, regulating rights and obligations of entrepreneurs – the party performing geological works, as both in the public law area (concession as an administrative act, a form of activity regulation, public law), and for the sake of the matter of private law (an agreement concerning mining usufruct, a personal right to property). Separately also indicate issues of legislation on certain aspects of the new geological and mining law according to the reports of the Special Committee, Publication of The Sejm of The Republic of Poland, 1696 of 28 April 2010.
Źródło:
Polityka Energetyczna; 2010, 13, 2; 265-280
1429-6675
Pojawia się w:
Polityka Energetyczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analiza osadów ilasto-mułowcowych w Polsce pod kątem możliwości występowania w nich niekonwencjonalnych nagromadzeń gazu ziemnego
Analysis of shale gas potential of siltstone and mudstone formations in Poland
Autorzy:
Poprawa, P.
Powiązania:
https://bibliotekanauki.pl/articles/2062677.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
zawartość TOC
dojrzałość termiczna
gaz w łupkach
TOC contents
thermal maturity
shale gas
Opis:
Analizowano formacje ilasto-mułowcowe o podwyższonej zawartości węgla organicznego w basenach sedymentacyjnych w Polsce pod kątem możliwości występowania w nich gazu ziemnego. Wysoki stopień deformacji tektonicznych łupków menilitowych w Karpatach zewnętrznych, a w mniejszym stopniu również łupków karbonu dolnego w strefie monokliny przedsudeckiej, ogranicza możliwość eksploatacji z nich gazu ziemnego. Osady ilasto-mułowcowe mioceńskiego zapadliska przedkarpackiego są nieperspektywiczne dla występowania gazu ziemnego w łupkach z uwagi na niską zawartość TOC oraz niski stopień konsolidacji. Osady ilasto-mułowcowe od najwyższej jury do najniższej kredy, jury dolnej i środkowej oraz retyku w basenie polskim, a także dolnopermskie łupki antrakozjowe i walchiowe w niecce śródsudeckiej charakteryzują się ogólnie zbyt niską dojrzałością termiczną do powstania złóż gazu. Górnopermskie łupki miedzionośne oraz ilasto-margliste odmiany facjalne dolomitu głównego w basenie polskim mają zbyt małą miąższość. Niska dojrzałość termiczna cechuje także łupki występujące w obrębie górnokarbońskich basenów węglowych, tj. w basenie lubelskim oraz we wschodniej części basenu górnośląskiego. W obu basenach brak jest ponadto homogenicznych kompleksów iłowcowych o dużej miąższości. Łupki w obrębie utworów najwyższego dewonu i najniższego karbonu na Pomorzu Zachodnim charakteryzują się stosunkowo niską zawartością węgla organicznego. Największe prawdopodobieństwo występowania gazu ziemnego stwierdzono dla łupków syluru dolnego i ordowiku górnego na kratonie wschodnioeuropejskim. Dolnokarbońskie łupki w obrębie utworów kulmowych strefy wielkopolskiej w rejonie monokliny przedsudeckiej stanowią drugorzędny cel prac poszukiwawczych.
Shale gas potential of organic rich claystone and mudstone formation from the sedimentary basins in Poland was analyzed. Intensive tectonic deformation of the Outer Carpathian Menilite shale, as well as their often low thermal maturity, are limits for shale gas exploration. To a lesser degree this is truth also for the Lower Carboniferous shale in the Wielkopolska zone (SW Poland). Claystone and mudstone in the Miocene foredeep basin of Carpathians are not consolidated and have too low TOC. The uppermost Jurassic to lowermost Cretaceous shale and the Lower and Middle Jurassic shale in the Polish Basin, as well as the Lower Permian Antracosia and Walchia shale in the Intra-Sudetic basin, are generally characterized by too low thermal maturity for gas generation. Thickness of the Upper Permian Copper shale as well as the Upper Permian Main Dolomite in shaly and marly development is too low to be considered as shale gas targets. Low thermal maturity is characteristic also for the Upper Carboniferous shale in the Lublin basins, and in the eastern part of the Upper Silesian Basin. Both the basins lack thick homogenous shale formation. The uppermost Devonian to lowermost Carboniferous shale in the Western Pomerania is characterized by too low TOC contents. The highest potential of shale gas exploration is related to the Upper Ordovician and/or Lower Silurian graptolitic shale at the East European Craton. The Lower Carboniferous shale in the Fore-Sudetic Monocline area is regarded as a secondary target.
Źródło:
Biuletyn Państwowego Instytutu Geologicznego; 2010, 439 (1); 159--172
0867-6143
Pojawia się w:
Biuletyn Państwowego Instytutu Geologicznego
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Koncesje na poszukiwanie i rozpoznawanie złóż węglowodorów w Polsce w tym shale gas i tight gas
Autorzy:
Zalewska, E.
Powiązania:
https://bibliotekanauki.pl/articles/2066286.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
złoża węglowodorów
gaz łupkowy
gaz uwięziony w szczelinach
hydrocarbon deposits
shale gas
tight gas
Źródło:
Przegląd Geologiczny; 2010, 58, 3; 213-215
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Petroleum geology of the Polish part of the Baltic region - an overview
Autorzy:
Pikulski, L.
Karnkowski, P. H.
Wolnowski, T.
Powiązania:
https://bibliotekanauki.pl/articles/2059075.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
Baltic Region
petroleum geology
shale gas
Opis:
The Polish part of the Baltic region is located within the contact zone between two large geological units: the Precambrian platform and the Paleozoic platform. It comprises the Polish sector of the southern Baltic Sea and the adjacent onshore part of Northern Poland (Western and Eastern Pomerania). The fundamental geological pattern is defined by the Teisseyre-Tornquist Zone, separating the East European Craton from the Paleozoic platform. As a result of exploration activity in the onshore Pomerania region, four oil fields in Cambrian sandstones, seven gas fields in Carboniferous sandstones, six gas fields in Rotliegend sandstones, and eleven oil fields within the Zechstein Main Dolomite horizon have been discovered. The petroleum play of the southern Baltic Sea region and adjacent areas must be considered separately for Eastern and Western Pomerania. In the Peribaltic Syneclise we can only take into consideration organic matter appearing in lower Paleozoic rocks but their geothermal history refers to the period from the Vendian up to the recent. The present extent of the "oil window" in the Upper Cambrian rocks is mainly restricted to the offshore area. Reservoir properties of the "gas window" Cambrian rocks are rather low due to intensive diagenetic processes. Acquisition of gas should be possible by processes of hydraulic stimulation (tight gas). Lower Paleozoic rocks rich in organic matter (Ordovician and Silurian), especially in the border zone of the EEC (Ro >>gt; 1.3%), could be an area of unconventional gas fields (shale gas). The Western Pomerania petroleum play shows two separate source rocks units. The older one embraces Carboniferous deposits with organic matter of terrestrial origin and generated gases accumulated in the Rotliegend and Carboniferous traps. The second petroleum system is located within the carbonates of the Zechstein Main Dolomite (Ca2). This is a closed system, meaning that the source rocks are at the same time the reservoirs sealed by Zechstein evaporates. Hitherto discovered hydrocarbon deposits in the Polish part of the Baltic region have confirmed good perspectives regarding oil and gas hydrocarbon zones. New, conventional and unconventional discoveries remain possible.
Źródło:
Geological Quarterly; 2010, 54, 2; 143-158
1641-7291
Pojawia się w:
Geological Quarterly
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potencjał występowania złóż gazu ziemnego w łupkach dolnego paleozoiku w basenie bałtyckim i lubelsko-podlaskim
Shale gas potential of the Lower Palaeozoic complex in the Baltic and Lublin-Podlasie basins (Poland)
Autorzy:
Poprawa, P.
Powiązania:
https://bibliotekanauki.pl/articles/2074759.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
gaz łupkowy
górny ordowik
dolny sylur
zachodni skłon kratonu wschodnioeuropejskiego
EEC
shale gas
Upper Ordovician
Lower Silurian
East European Craton
Opis:
The Lower Palaeozoic basin at the western slope of the East European Craton (EEC) (Fig. 1) is currently recognized as one of the most interesting areas for shale gas exploration in Europe. The Upper Ordovician and/or Lower Silurian graptolitic shale is here the major potential reservoir formation (Figs. 2, 3) (Poprawa & Kiersnowski, 2008; Poprawa, 2009). Moreover, the Upper Cambrian to Tremadocian Alum shale is an additional target locally in the northern part of the Baltic Basin. These sediments are often rich in organic matter (Klimuszko, 2002; Poprawa & Kiersnowski, 2008; Więcław et al., 2010; Skręt & Fabiańska, 2009), as well as silica. Limited data from two wells in the western part of the Baltic Basin show silica contents up to 60-70% (Fig. 4) (Krzemiński & Poprawa, 2006). The advantage of the Lower Palaeozoic shale from the western slope of EEC is its broad lateral extend (Fig. 1) and relatively quiet tectonic setting. The later is particularly true in the case of the Baltic Basin and Podlasie Depression. Structural development becomes to some extent more complex in the case of the Lublin region, where the Lower Palaeozoic shale appears affected by late Famennian to early Visean block tectonics. Development of the organic rich Lower Palaeozoic shale at the western slope of EEC was controlled by several factors. Very important was here the rate of non-organic detritus deposition (Fig. 5). The other factors included organic productivity of the basin, its subsidence, relative sea level changes, basin bathymetry, geochemical conditions at the sea bottom (especially oxygenation), degree of bioturbation, presence of topographic barriers at the sea bottom, leading to development of isolated anoxic zones, sea currents configuration, and climate changes. Organic matter of the Lower Palaeozoic is characterized by presence of II type of kerogen. Appearance of the organic-rich shale within the Lower Palaeozoic section at the western slope of the EEC is diachronic (Fig. 6). From NW towards east and SE, the intervals richest in organic appear related to systematically younger strata, starting from the Upper Cambrian to Tremadocian, as well as the Upper Llanvirn and Caradoc in the Łeba Elevation (northern onshore Baltic Basin; Fig. 7). In central parts of the Baltic Basin and Podlasie Depression as well as NW part of the Lublin region, the intervals richest in organic matter are found in the Llandovery section, while in the eastern part of the Baltic Basin and SE part of the Lublin region the highest TOC contents are found in the Wenlock. Therefore, depending on location at the western slope of EEC, different formations are recognized as the targets for shale gas exploration. The Upper Cambrian to Tremadocian shale, present only in the northern part of the Baltic Basin, is characterized by very high contents of organic matter, with average value for individual sections usually ranging from 3 to 12% TOC. This shale formation is, however, of very limited thickness, not higher than several meters in the onshore part of the basin (Szymański, 2008; Więcław et al., 2010). In onshore part of the studied area, thickness of the Caradoc shale changes from a few meters up to more than 50 m (Modliński & Szymański, 1997, 2008). Contents of organic matter in these sediments are the highest in the Łeba Elevation zone and the basement of the Płock-Warszawa trough, where average TOC contents in individual well sections range from 1% to nearly 4%. Ashgill rocks are characterized by high TOC contents only in the Łeba Elevation zone, where average TOC values for individual well sections rise up to 4,5% at the most. Llandovery shale has high TOC contents, particularly in its lower part, throughout vast parts of the western slope of EEC. The maximum measured TOC contents in those rocks in Podlasie Depression are nearly 20%. Average TOC values for individual sections of the Llandovery are usually equal 1% do 2,5%, except for the Podlasie Depression, where they may reach as much as 6%. Thickness of the Llandovery shale generally increases from east to west to approximately 70 m at the most. However, in the major part of that area it ranges from 20 to 40 m (Modliński et al., 2006). Thickness of theWenlock sediments is also highly variable laterally, from less than 100 m in SE part of the Lublin region to over 1000 m in western part of the Baltic Basin. Average content of organic matter in individualWenlock sections in central and western parts of the Baltic Basin and the Podlasie Depression usually ranges from 0,5% to 1,3% TOC. In the eastern part of the Baltic Basin and in the Lublin region it is higher, rising to about 1-1,7% TOC. The above mentioned TOC values show the present day content of organic matter, which is lower than the primary one. The difference between the present and primary TOC contents increases along with increasing thermal maturity. It is also highly dependant on genetic type of kerogen. Taking into account the II type of kerogen from the analyzed sediments, it may be stated that in the zones located in the gas window the primary TOC was at least one-half greater than indicated by laboratory measurements. From the shale gas point of view, the basins at the western slope of EEC are characterized by a negative relation between depth at present day burial and thermal maturity (Poprawa & Kiersnowski, 2008). In the zones with burial depth small enough to keep exploration costs at very low level (Fig. 8), thermal maturity of shales is too low for gas generation (Figs. 9, 12a). Maturity increases westwards (Fig. 8) along with depth of burial (Fig. 9). Thus, the potential shale gas accumulations in the western part of the studied area occur at depths too high for commercial gas exploration and exploitation (Fig. 12b). Between of the zone of maturity too low for shale gas development and that where depth of burial is too large for its exploration, there occurs a broad zone of the Lower Palaeozoic shale with increased shale gas exploration potential (Fig. 13) (Poprawa & Kiersnowski, 2008; Poprawa, 2009). In that area, there are shale intervals of relatively high thickness and average TOC exceeding 1-2% TOC (Fig. 7, 10, 12c). Thermal maturity of these rocks appears sufficient for generation of gas (Fig. 9, 10), and results of well tests for deeper-seated conventional reservoirs suggest good quality of dry gas with no nitrogen (Fig. 12c). It should be noted that some gas shows have been recorded in the Lower Palaeozoic shale. Moreover, depth of burial is not too large for commercial shale gas exploration (Fig. 8, 10). Hydrocarbon shows and their composition in the Lower Palaeozoic are strictly related to thermal maturity of the source rock. In the zones of low maturity, these are almost exclusively oil shows documented. Further westwards, in the zone transitional to the gas window area, gas is wet and contains significant contribution of hydrocarbon gases higher than methane.Within the gas window zone, the records are almost exclusively limited to methane shows. Moreover, within the zones of low maturity high nitrogen contents were recorded (Poprawa, 2009). In the zones characterized by thermal maturity in the range from 0,8 to 1,1% Ro and very high TOC contents (over 15% at the most), there is a potential for oil shale exploration. The zones with the highest oil shale potential include eastern Baltic Basin in SW Lithuania and NE part of the Podlasie Depression. Some data necessary for entirely firm estimations of potential shale gas resources of the Lower Palaeozoic complex in Poland are still missing. However, preliminary estimates indicate that these shale gas resources may possibly be classified as gigantic (1,400-3,000 bln m3 of recoverable gas; Fig. 15). For comparison, resources of conventional gas in Poland are equal to 140,5 bln m exp.3, and annual domestic gas consumption is at the level of 14 bln m exp. 3. However, it should be noted that some characteristics of the Lower Palaeozoic complexes indicate increased exploration risk. The average TOC contents are here lower than in classic examples of gas shales, like e.g. Barnett shale. Moreover, in the zone of optimal burial depth (less than 3000–3500 m) thermal maturity is lower than in the case of the Barnett shale core area. An important risk factor is also both a limited amount and limited resources of conventional gas fields in the Lower Palaeozoic complex (Fig. 13). Amount and intensity of gas shows in the Lower Palaeozoic shale are also relatively low, and there is no evidences for presence of overpressure in this complex. In the eastern part of western slope of the EEC, there appears an additional risk factor-arelatively high content of nitrogen in gas.
Źródło:
Przegląd Geologiczny; 2010, 58, 3; 226-249
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Rola geofizyki wiertniczej w określeniu zasobów gazu ziemnego w łupkach
Application of wire log analysis for petrophysical evaluation and determination of shale gas reserves
Autorzy:
Drop, K.
Kozłowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/2074763.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
gaz łupkowy
interpretacja geofizyki wiertniczej
łupki
shale gas
petrophysical interpretation
Silurian Shale
Opis:
The paper presents differences between conventional and shale gas plays (Tab. 1). Shale gas concept comprises a wide range of reservoirs, from the coalbed to tight gas plays. In Europe, where the shale gas rush has just started, shaly rocks were treated so far as unproductive and high quality data sets necessary for evaluating properties of those rocks are usually missing. Therefore, US shale gas plays like Barnett and Haynesville are widely used as valuable reference tools (Jacobi, 2008; Parker, 2009). Coal, where gas is essentially stored entirely by sorption, represents one end of the unconventional gas spectrum and tight gas sands, where gas is essentially stored by compression only - the other end of that spectrum. In turn, shale reservoirs with gas entrapped by sorption and compression, fill the space between the two endpoints. Differentiation of those two components is one of the primary goals of an analysis program. Shale gas reservoirs are formed by a wide variety of rock types which makes it necessary to use most appropriate technologies to characterize both coalbed and tight gas reservoirs. The current paper concentrates on tools for evaluating petrophysical parameters, most suitable for shale gas plays. In the case of old wells with old fashion Soviet logs, the uncompensated neutron gamma tool was commonly used tool. This was the only porosity reading curve in log suite, "neutron porosity curve" which could be overlaid with natural gamma ray (GR) (Fig. 1). Natural gamma ray curve is a good indicator of organic matter, which adsorbed uranium. Other hydrocarbon signatures can be traced on the basis of SP vs GR, GR vs resistivity. Some of hydrocarbon signatures can be related to TOC from core lab measurements. For contemporary good quality wire line log curves the Passey et al. (1990) method has been applied. This method is based on computation of separation between acoustic transit time and resistivity (R) (Fig. 2). The resulting difference is used to calculate TOC taking into consideration maturity of organic matter which is parameter for a bunch of relationships (TOC vs R). Local calibration R to TOC from cores are required. In order to determine reliable relationships between R, gas contents to TOC, the high technology coring service and sensitive laboratory measurements are necessary. The results of petrophysical analyses are important for estimations of gas resources in shales. The formulas for computation of conventional and unconventional gas reserves are generally similar. However, in the case of the unconventional gas reserves, instead of porosity reservoir storage the rock density is applied, and for determinations of hydrocarbon volume-the gas content is applied in place of hydrocarbon saturation. If European unconventional reservoirs turn to be profitable then continent landscape will also change. The big gas fields would require dense networks of rigs that will have some negative environmental impact. This would require a change in industry structure, as well as in public opinion and legal regulations.
Źródło:
Przegląd Geologiczny; 2010, 58, 3; 263-265
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Shale gas - how is it developed?
Metody pozyskiwania gazu z warstw iłołupkowych
Autorzy:
Rajtar, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/300554.pdf
Data publikacji:
2010
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
gaz z warstw iłołupkowych
shale gas
Opis:
Shales are the most abundant sedimentary rocks. The shales with high organic content are considered good source rocks for oil and gas accumulations. From the engineering standpoint, shale gas reservoirs exhibit characteristics of both conventional gas reservoirs (free gas in pore space) and coalbed gas reservoirs (adsorbed gas). Their extremely low matrix permeability (order of nanodarcies, nd) creates additional complexity in their development. On the other hand, the abundance of shales makes this type of unconventional gas development very attractive for economies that seek relatively clean sources of energy. The paper reviews four general steps in the development of shale gas reservoir: geological identification of potentially productive gas shales, engineering characterization of gas shale reservoirs, typical completion techniques proven successful in shales, evaluation of reserves and development planning. The review focuses on the issues which in the author's opinion have major impact on successful shale reservoir development. The review is based on experiences of the independent oil and gas producer successfully engaged in shale gas development in the continental USA.
Iłołupki należą do najbardziej obfitych skał osadowych. Ze swoją wysoką zawartością substancji organicznych stanowią znakomitą skałę macierzystą dla akumulacji ropy naftowej i gazu ziemnego. Z inżynieryjnego punktu widzenia gaz pochodzenia iłołupkowego łączy cechy tradycyjnego złoża gazu (wolne przestrzenie porowe) z gazem pochodzącym ze złóż węgla (gaz zaadsorbowany). Niezwykle niska przepuszczalność matrycy (rzędu nanodarcy, nd) stwarza dodatkowy problem przy wydobyciu. Z drugiej strony, obfitość iłołupków zachęca do eksploatacji tego niekonwencjonalnego gazu, szczególnie w przypadku gospodarki nastawionej na stosunkowo czyste źródła energii. W artykule dokonano przeglądu czterech głównych etapów udostępnienia złóż gazu pochodzącego z warstw iłołupków: geologiczna identyfikacja warstw iłołupków zawierających gaz, charakterystyka inżynierska złóż gazu z warstw iłołupkowych, sprawdzone techniki udostępniania w warstwach iłołupków, oszacowanie zasobów i opracowanie planu udostępnienie. W artykule skupiono uwagę na sprawach, które w opinii autora mają podstawowe znaczenie w udanym procesie udostępniania złóż w warstwach iłołupków. Przedstawione omówienie oparto na doświadczeniach niezależnego producenta ropy naftowej i gazu ziemnego, który z powodzeniem zaangażował się w udostępnianie gazu ziemnego z warstw iłołupków na lądowej części USA.
Źródło:
Wiertnictwo, Nafta, Gaz; 2010, 27, 1--2; 355-367
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Strategia poszukiwań złóż gazu ziemnego w łupkach
Shale gas exploration strategy
Autorzy:
Hadro, J.
Powiązania:
https://bibliotekanauki.pl/articles/2074762.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
gaz niekonwencjonalny
gaz łupkowy
wiercenia poziome
stymulacja pęknięć
zasoby gazu łupkowego
wydobycie gazu
poszukiwania gazu łupkowego
ekonomika gazu łupkowego
unconventional gas
shale gas
horizontal drilling
fracture stimulation
shale gas resource
gas production
shale gas exploration
shale gas economics
Opis:
Unconventional gas by definition is economically less profitable and more difficult to extract then conventional gas. However, gradual depletion of conventional gas fields as well as large resources of unconventional gas make the latter an attractive target. Coalbed methane (CBM), tight gas and shale gas have been successfully developed in the US over the past two decades. Shale gas production has grown at the fastest pace in recent years and reached over 2 tcf in 2008, which is 6-fold increase since 1998. Key to success of unconventional gas development was Noncoventional Fuels Tax Credit introduced by the US government in 1980. This initial production growth of unconventional gas and shale gas in particular, was later sustained by the development of horizontal drilling and fracture stimulation technologies, economy of scale and increasing gas prices. Economics of producing shale gas is marked by bigger resource potential and, at the same time, lower production rates and higher drilling costs as compared to conventional gas, which entails adopting cautious investment strategies. Shale gas exploration strategies are also different from those of conventional gas and, initially, require an extensive source rock analysis and a big land position to identify "sweet spots". Shale gas exploration in Poland is in its infancy, being focused on the Silurian-Ordovician shale formation which is poorly explored and thus poses a significant exploration risk. Therefore, exploration companies have used a cautious approach which is reflected in planning of the concession activities divided in a few phases, with each successive phase contingent on the positive results of the preceding one. These phases include: existing data analysis, seismic, drilling an exploratory well with extensive core analyses prior to a pilot testing program using horizontal wells. On a technical level of shale gas exploration, the integration of many disciplines is required for commercial success. Potential barriers to shale gas exploration in Poland have been identified such as: regulations which are in favor of the domestic service companies impeding competition, changeable and unclear environmental protection regulations, as well as insufficient liberalization of the domestic gas market.
Źródło:
Przegląd Geologiczny; 2010, 58, 3; 250-258
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
System węglowodorowy z gazem ziemnym w łupkach-północnoamerykańskie doświadczenia i europejskie perspektywy
Shale gas hydrocarbon system-North American experience and European potential
Autorzy:
Poprawa, P.
Powiązania:
https://bibliotekanauki.pl/articles/2074761.pdf
Data publikacji:
2010
Wydawca:
Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy
Tematy:
system węglowodorowy
gazem ziemny w łupkach
TOC
dojrzałość termiczna
hydrocarbon system
shale gas
TOC contents
thermal maturity
Opis:
The last two decades witnessed a significant progress in understanding unconventional hydrocarbon systems, exploration and developments in technology, which led to substantial increase of tight gas and shale gas production. This progress occurred mainly in USA, where unconventional gas production currently stands for ~~50 % of annual domestic gas production, and it is forecast to increase to more than 60 % in 2016. Recoverable shale gas resources of USA and Canada are estimated at present for at least ~20 trillion m3 (~~750 Tcf). Shale gas is a unique hydrocarbon system in which the same rock formation is a source rock, reservoir rock and seal (Figs. 2, 3). Gas field often appears continuous at a regional scale and does not requires hydrocarbon trap (Fig. 3). For development of shale gas, a high TOC contents (>1-2 %) is required for relatively thick formation (>30-70 m). High thermal maturity is essential for gas generation (>1.1-1.3 % Ro), and relatively low depth of burial (3500-4500 m) is necessary for commercial gas production. Gas is accumulated in isolated pores or adsorbed by organic matter (Fig. 5). Gas exploitation requires dense grid of wells with horizontal intervals and multiple fracturing. Shale gas is currently produced in several basins in USA and Canada. American success in unconventional gas production led to intensive shale gas and tight gas exploration across the world, with Europe being one of the priorities (Fig. 7). At the current stage, a couple of European sedimentary basins were selected as the major shale gas exploration targets. This includes predominantly the Lower Jurassic shale in the Lower Saxony Basin in Germany, the Alum shale in Scania (Southern Sweden), and to a lesser degree, the South-Eastern Basin in France with its Lower Jurassic and Lower to Upper Cretaceous shales, the Paris Basin in France with the Lower Jurassic shale, the Upper Jurassic shale in the Vienna Basin, the Lower Cretaceous Wealden shale in England, the Bodensee Trough in SW Germany with the Permian-Carboniferous shale, and the cenozoic Mako Trough in Hungary. In Europe the most intense exploration for shale gas is currently being carried out in Poland. The major target in that exploration is the Lower Palaeozoic shale at the East European Craton (Baltic and Lublin-Podlasie Basin), mainly the Upper Ordovician and/or Lower Silurian graptolitic shale (Fig. 8) (Poprawa & Kiersnowski, 2008; Poprawa, 2010). For that formation, Wood Mackenzie and Advanced Resources International estimated recoverable gas resources as equal to 1,400 mld m exp.3 and to 3,000 mld m exp.3, respectively. Also the Lower Carboniferous shale of the south-western Poland (area of Fore-Sudetic Homocline; Fig. 8) could potentially accumulate gas, however in this case a limitation to potential for shale gas is a complex tectonic setting. Other black shale formations in Poland appear to have lower potential for shale gas exploration due to insufficient thermal maturity, low TOC, or low thickness.
Źródło:
Przegląd Geologiczny; 2010, 58, 3; 216-225
0033-2151
Pojawia się w:
Przegląd Geologiczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Znaczenie gazu łupkowego
The importance of shale gas
Autorzy:
Niedziółka, D.
Powiązania:
https://bibliotekanauki.pl/articles/394519.pdf
Data publikacji:
2010
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
gaz łupkowy
bezpieczeństwo energetyczne
gaz ziemny
wydobycie
shale gas
energy safeness
natural gas
exploitation
Opis:
Gaz łupkowy (shale gas) zaliczany jest do złóż niekonwencjonalnych, zalegających w trudno dostępnych (na głębokości od 0,5 do 4 km) basenach sedymentacyjnych w zamkniętych skałach. Dostęp do nich przez dziesięciolecia był utrudniony z uwagi na ograniczenia techniczne i wysokie koszty eksploatacji. Obecnie w obliczu wzrostu cen gazu konwencjonalnego i wzrostu popytu na gaz rośnie zainteresowanie państw i koncernów paliwowych eksploracją tych złóż. W Polsce - według szacunków firm konsultingowych - może występować nawet od 1,5 do 3 bln m3 gazu łupkowego. Gdyby te informacje się potwierdziły Polska ma szansę stać się jednym z największych producentów i eksporterów gazu ziemnego, zmieniając swoją dotychczasową pozycję na rynku i strukturę wykorzystania surowców energetycznych.
The shale gas known also as unconventional one covers gas resources hidden in difficult to excess (even 4 kilometres deep below earth surface, in sedimentation basin) closed rocks. The access to the shale gas has been impeded for many years due to the technical limitations and high costs of exploitation. Currently in view of increase of prices of conventional gas as well as growth of demand on gas one can observe an increasing interest of states and oil companies to exploit the shale gas fields. In Poland according to different estimations there are fields of shale gas cover from 1.500 trillion up to 3.000 trillion m3. If the above mentioned data are confirmed Poland will have the chance to become one of the biggest producers and exporters of gas. changing its up to date market position as well as structure of usage of energy fuel.
Źródło:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN; 2010, 78; 175-185
2080-0819
Pojawia się w:
Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Gaz łupkowy - niekonwencjonalny gaz ziemny
Shale gas - unconventional natural gas
Autorzy:
Machowska, H.
Powiązania:
https://bibliotekanauki.pl/articles/1286631.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Inżynierów i Techników Przemysłu Chemicznego. Zakład Wydawniczy CHEMPRESS-SITPChem
Tematy:
gaz łupkowy
gaz ziemny
shale gas
natural gas
Opis:
Konieczność zapewnienia bezpieczeństwa energetycznego w Europie i na świecie, a także rozwój technologii górnictwa, zwróciło uwagę na niekonwencjonalne złoża gazu ziemnego, w szczególności łupkowego. Na podstawie danych geologicznych i analizy potencjału gazowego, ocenia się, że znaczne złoża tego gazu występują na terenie Polski. Jednak technologia wydobycia gazu niekonwencjonalnego wymaga badań geologicznych geochemicznych i środowiskowych.
The need to ensure energy security for Europę and the world, and development of mining technologies has drawn attention to unconventional natural gaś deposits, in particular the shale gaś. Basing on the geological data and the gaś potential analysis, it is assessed mat there arę considerable deposits of shale gaś on the territory of Poland. However, the technology of mining unconventional gaś reąuires superb geological, geochemical and environmental survey.
Źródło:
Chemik; 2011, 65, 10; 954-959
0009-2886
Pojawia się w:
Chemik
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Jesteśmy przygotowani do realizacji wielkich inwestycji
Autorzy:
Jaskóła, K.
Biedrzycka, A.
Powiązania:
https://bibliotekanauki.pl/articles/363771.pdf
Data publikacji:
2011
Wydawca:
Nowoczesne Budownictwo Inżynieryjne
Tematy:
autostrada A2
budownictwo
gaz łupkowy
civil engineering
highway A2
shale gas
Opis:
Wywiad z Konradem Jaskółą, prezesem zarządu Polimeksu-Mostostalu SA.
Źródło:
Nowoczesne Budownictwo Inżynieryjne; 2011, 5; 12-15
1734-6681
Pojawia się w:
Nowoczesne Budownictwo Inżynieryjne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Oddziaływanie prac wiertniczych na środowisko przy poszukiwaniu gazu łupkowego w Polsce
The impact of drilling works on the environment while exploring for shale gas in Poland
Autorzy:
Macuda, J.
Marchel, P.
Powiązania:
https://bibliotekanauki.pl/articles/299349.pdf
Data publikacji:
2011
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
gaz łupkowy
ochrona środowiska
odpady wiertnicze
hałas
shale gas
environmental protection
drilling wastes
noise
Opis:
Udostępnianie złóż gazu ziemnego ze złóż niekonwencjonalnych realizuje się za pomocą wielodennych otworów wiertniczych o głębokości do kilku tysięcy metrów. Wiercenie takich otworów ze względu na swój charakter stanowi potencjalne zagrożenie dla wielu elementów środowiska naturalnego, ale stopień ich oddziaływania jest w każdym przypadku nieco inny i uzależniony przede wszystkim od zakresu realizowanych prac i wrażliwości środowiska na zanieczyszczenie. W pracy omówiono zagrożenia środowiska występujące w trakcie prowadzenia prac wiertniczych mających na celu poszukiwanie gazu łupkowego oraz przedstawiono ich ilościowe i jakościowe oddziaływanie na wybrane elementy środowiska.
Making gas reservoirs available from unconventional reservoirs is done with multilateral wells that reach depths of up to a few thousand meters. Drilling such wells due to its characteristic can create a potential danger for many elements of the natural environment. However level of its impact in every case is a bit different and depends especially on scope of performed works and sensitivity of environment to the pollution . The paper discusses the threats to the environment that occur while drilling for shale gas and its qualitative and quantitative impacts on the elements of the environment.
Źródło:
Wiertnictwo, Nafta, Gaz; 2011, 28, 1-2; 263-271
1507-0042
Pojawia się w:
Wiertnictwo, Nafta, Gaz
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies