Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "severity" wg kryterium: Temat


Tytuł:
A Deep-Learning-Based Bug Priority Prediction Using RNN-LSTM Neural Networks
Autorzy:
Bani-Salameh, Hani
Sallam, Mohammed
Al shboul, Bashar
Powiązania:
https://bibliotekanauki.pl/articles/1818480.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
assigning
priority
bug tracking systems
bug priority
bug severity
closed-source
data mining
machine learning
ML
deep learning
RNN-LSTM
SVM
KNN
Opis:
Context: Predicting the priority of bug reports is an important activity in software maintenance. Bug priority refers to the order in which a bug or defect should be resolved. A huge number of bug reports are submitted every day. Manual filtering of bug reports and assigning priority to each report is a heavy process, which requires time, resources, and expertise. In many cases mistakes happen when priority is assigned manually, which prevents the developers from finishing their tasks, fixing bugs, and improve the quality. Objective: Bugs are widespread and there is a noticeable increase in the number of bug reports that are submitted by the users and teams’ members with the presence of limited resources, which raises the fact that there is a need for a model that focuses on detecting the priority of bug reports, and allows developers to find the highest priority bug reports. This paper presents a model that focuses on predicting and assigning a priority level (high or low) for each bug report. Method: This model considers a set of factors (indicators) such as component name, summary, assignee, and reporter that possibly affect the priority level of a bug report. The factors are extracted as features from a dataset built using bug reports that are taken from closed-source projects stored in the JIRA bug tracking system, which are used then to train and test the framework. Also, this work presents a tool that helps developers to assign a priority level for the bug report automatically and based on the LSTM’s model prediction. Results: Our experiments consisted of applying a 5-layer deep learning RNN-LSTM neural network and comparing the results with Support Vector Machine (SVM) and K-nearest neighbors (KNN) to predict the priority of bug reports. The performance of the proposed RNN-LSTM model has been analyzed over the JIRA dataset with more than 2000 bug reports. The proposed model has been found 90% accurate in comparison with KNN (74%) and SVM (87%). On average, RNN-LSTM improves the F-measure by 3% compared to SVM and 15.2% compared to KNN. Conclusion: It concluded that LSTM predicts and assigns the priority of the bug more accurately and effectively than the other ML algorithms (KNN and SVM). LSTM significantly improves the average F-measure in comparison to the other classifiers. The study showed that LSTM reported the best performance results based on all performance measures (Accuracy = 0.908, AUC = 0.95, F-measure = 0.892).
Źródło:
e-Informatica Software Engineering Journal; 2021, 15, 1; 29--45
1897-7979
Pojawia się w:
e-Informatica Software Engineering Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A distributed big data analytics model for traffic accidents classification and recognition based on SparkMlLib cores
Autorzy:
Mallahi, Imad El
Riffi, Jamal
Tairi, Hamid
Ez-Zahout, Abderrahmane
Mahraz, Mohamed Adnane
Powiązania:
https://bibliotekanauki.pl/articles/27314355.pdf
Data publikacji:
2022
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
big data
machine learning
traffic accident
severity prediction
convolutional neural network
Opis:
This paper focuses on the issue of big data analytics for traffic accident prediction based on SparkMllib cores; however, Spark’s Machine Learning Pipelines provide a helpful and suitable API that helps to create and tune classification and prediction models to decision-making concerning traffic accidents. Data scientists have recently focused on classification and prediction techniques for traffic accidents; data analytics techniques for feature extraction have also continued to evolve. Analysis of a huge volume of received data requires considerable processing time. Practically, the implementation of such processes in real-time systems requires a high computation speed. Processing speed plays an important role in traffic accident recognition in real-time systems. It requires the use of modern technologies and fast algorithms that increase the acceleration in extracting the feature parameters from traffic accidents. Problems with overclocking during the digital processing of traffic accidents have yet to be completely resolved. Our proposed model is based on advanced processing by the Spark MlLib core. We call on the real-time data streaming API on spark to continuously gather real-time data from multiple external data sources in the form of data streams. Secondly, the data streams are treated as unbound tables. After this, we call the random forest algorithm continuously to extract the feature parameters from a traffic accident. The use of this proposed method makes it possible to increase the speed factor on processors. Experiment results showed that the proposed method successfully extracts the accident features and achieves a seamless classification performance compared to other conventional traffic accident recognition algorithms. Finally, we share all detected accidents with details onto online applications with other users.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2022, 16, 4; 62--71
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An analysis of influential factors associated with rural crashes in a developing country: a case study of Iran
Autorzy:
Sheykhfard, Abbas
Haghighi, Farshidreza
Abbasalipoor, Reza
Powiązania:
https://bibliotekanauki.pl/articles/2173931.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
rural roads
severity of crashes
crashes
injury-fatal crashes
logit model
crash data collected
drogi wiejskie
ciężkość wypadków
awarie
wypadki śmiertelne
model logiczny
Opis:
Road traffic deaths continue to rise, reaching 1.35 million in recent years. Road traffic injuries are the eighth leading cause of death for people of all ages. Note that there is a wide difference in the crash rate between developed and developing countries and that developed countries report much lower crash rates than developing and underdeveloped countries. World Health Organization reports that over 80% of fatal road crashes occur in developing countries, while developed countries account for about 7% of the total. The rate of road crashes in developing countries is higher than the global average, despite some measures reducing deaths over the last decade. Numerous studies have been carried out on the safety of urban roads. However, comprehensive research evaluating influential factors associated with rural crashes in developing countries is still neglected. Therefore, it is crucial to understand how factors influence the severity of rural road crashes. In the present study, rural roads in Mazandaran province were considered a case study. The Crash data collected from the Iranian Legal Medicine Organization covers 2018 to 2021, including 2047 rural crashes. Dependent variables were classified as damage crashes and injury-fatal crashes. Besides, independent variables such as driver specifications, crash specifications, environment specifications, traffic specifications, and geometrical road specifications were considered parameters. The logit model data indicate that factors associated with driver and crash specifications influence rural crashes. The type of crashes is the most critical factor influencing the severity of crashes, on which the fatal rate depends. The findings suggested that implementing solutions that minimize the effect of the factors associated with injury and death on rural roads can reduce the severity of crashes on rural roads that share the same safety issues as the case study. Further studies can also be conducted on the safety and mechanics of the vehicle by focusing the research on the types of vehicles and the sources of the damage.
Źródło:
Archives of Transport; 2022, 63, 3; 53--65
0866-9546
2300-8830
Pojawia się w:
Archives of Transport
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An assessment of machine learning and data balancing techniques for evaluating downgrade truck crash severity prediction in Wyoming
Autorzy:
Ampadu, Vincent-Michael Kwesi
Haq, Muhammad Tahmidul
Ksaibati, Khaled
Powiązania:
https://bibliotekanauki.pl/articles/2176018.pdf
Data publikacji:
2022
Wydawca:
Fundacja Centrum Badań Socjologicznych
Tematy:
crash severity
performance
extreme gradient boosting tree
adaptive boosting tree
random forest
gradient boost decision tree
adaptive synthetic algorithm
Opis:
This study involved the investigation of various machine learning methods, including four classification tree-based ML models, namely the Adaptive Boosting tree, Random Forest, Gradient Boost Decision Tree, Extreme Gradient Boosting tree, and three non-tree-based ML models, namely Support Vector Machines, Multi-layer Perceptron and k-Nearest Neighbors for predicting the level of severity of large truck crashes on Wyoming road networks. The accuracy of these seven methods was then compared. The Final ROC AUC score for the optimized random forest model is 95.296 %. The next highest performing model was the k-NN with 92.780 %, M.L.P. with 87.817 %, XGBoost with 86.542 %, Gradboost with 74.824 %, SVM with 72.648 % and AdaBoost with 67.232 %. Based on the analysis, the top 10 predictors of severity were obtained from the feature importance plot. These may be classified into whether safety equipment was used, whether airbags were deployed, the gender of the driver and whether alcohol was involved.
Źródło:
Journal of Sustainable Development of Transport and Logistics; 2022, 7, 2; 6--24
2520-2979
Pojawia się w:
Journal of Sustainable Development of Transport and Logistics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of insomnia in those over 60 year of age
Autorzy:
Wolińska, Weronika
Pawlak, Iwona
Mroczek, Bożena
Powiązania:
https://bibliotekanauki.pl/articles/552683.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Przyjaciół Medycyny Rodzinnej i Lekarzy Rodzinnych
Tematy:
depression
insomnia
Beck Depression Inventory
Athens Insomnia Scale (AIS )
Insomnia Severity Index (ISI ).
Źródło:
Family Medicine & Primary Care Review; 2016, 4; 482-485
1734-3402
Pojawia się w:
Family Medicine & Primary Care Review
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Applying Hunger Game Search (HGS) for selecting significant blood indicators for early prediction of ICU COVID-19 severity
Autorzy:
Sayed, Safynaz AbdEl-Fattah
ElKorany, Abeer
Sayed, Sabah
Powiązania:
https://bibliotekanauki.pl/articles/27312915.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ICU severity prediction
COVID-19
clinical blood tests
Hunger Game search
HGS
optimization algorithm
support vector machine
SVM
feature selection
Opis:
This paper introduces an early prognostic model for attempting to predict the severity of patients for ICU admission and detect the most significant features that affect the prediction process using clinical blood data. The proposed model predicts ICU admission for high-severity patients during the first two hours of hospital admission, which would help assist clinicians in decision-making and enable the efficient use of hospital resources. The Hunger Game search (HGS) meta-heuristic algorithm and a support vector machine (SVM) have been integrated to build the proposed prediction model. Furthermore, these have been used for selecting the most informative features from blood test data. Experiments have shown that using HGS for selecting features with the SVM classifier achieved excellent results as compared with four other meta-heuristic algorithms. The model that used the features that were selected by the HGS algorithm accomplished the topmost results (98.6 and 96.5%) for the best and mean accuracy, respectively, as compared to using all of the features that were selected by other popular optimization algorithms.
Źródło:
Computer Science; 2023, 24 (1); 113--136
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Architektura a wolność
Architecture and freedom
Autorzy:
Włodarczyk, J. A.
Powiązania:
https://bibliotekanauki.pl/articles/115216.pdf
Data publikacji:
2015
Wydawca:
Wyższa Szkoła Techniczna w Katowicach
Tematy:
architektura
wolność
prawo
rygor
architecture
freedom
severity
law
rule
private properties
public properties
Opis:
Architektura, wbrew jakże częstemu traktowaniu jej jako homogenicznej dyscypliny, zajmującej się wyłącznie zrealizowanymi budynkami/budowlami, w dodatku wybranymi, bez kontekstu przestrzennego, jest w istocie fenomenem niesłychanie szerokiego kąta postrzegania, w przeciwieństwie do większości innych dyscyplin, artystycznych, technicznych czy humanistycznych. Wbrew pozorom zależność jej od stopnia wolności, w jakim powstaje, od jej nadmiaru do niedoboru czy wręcz braku, świadczy o jej kondycji. Z zależnością architektury od wolności jest podobnie, czyli ambiwalentnie, jak w przypadku prawa, władzy, religii czy stopnia własności: własne – wspólne.
Architecture is usually treated as the homogenous and independent phenomenon strictly tight with the material result of human activity in the space we live. The problem is quite different: architecture depends on rules and laws, also on the kind of property – private or public, and on other, various circumstances. In creating of architecture we can not be quite free.
Źródło:
Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach; 2015, 7; 41-45
2082-7016
2450-5552
Pojawia się w:
Zeszyty Naukowe Wyższej Szkoły Technicznej w Katowicach
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessing students’ awareness of environmental hazards and risks in public tertiary educational institutions in Oyo State, Nigeria
Ocena świadomości co do zagrożenia i ryzyka środowiskowego studentów publicznych instytucji edukacyjnych trzeciego stopnia w Stanie Oyo w Nigerii
Autorzy:
Daramola, Oluwole
Odunsi, Oluwafemi
Powiązania:
https://bibliotekanauki.pl/articles/435211.pdf
Data publikacji:
2016-12-15
Wydawca:
Uniwersytet Opolski
Tematy:
environmental hazards
students’ awareness
educational campuses
hazard awareness
risk severity
zagrożenia środowiskowe
świadomość studentów
kampusy edukacyjne
świadomość zagrożenia
intensywność ryzyka
Opis:
Environmental hazards occur in any sphere of human environment and at any locations where human activities take place. One of these locations is the educational campus environment where students reside and carry out their daily academic activities. A cursory observation of campus environments in Nigeria showed evidences of environmental hazards with their associated risks while there has been a dearth of studies on the subject. This paper therefore assessed students’ awareness of environmental hazards and risks in public tertiary educational institutions in Oyo State. Questionnaire were administered on 367 students that were selected using probability sampling techniques. Descriptive analysis was used in computing mean Hazard Awareness Indexes (RSI) and mean Risk Severity Indexes (HAI) for the institutions. Findings revealed that students were aware of environmental hazards and the severity of their associated risks in the institutions both in hostels and academic areas. However, the level of awareness was higher in some institutions than the other. It was recommended that the school authorities should create enlightenment programmes and implement policies that could enhance students’ awareness of environmental hazards and risks in the institutions.
Ryzyko środowiskowe występuje w każdej sferze środowiska człowieka i w każdym miejscu działalności ludzkiej. Jednym z takich miejsc jest środowisko kampusu uniwersyteckiego, w którym mieszkają i wykonują swoje codzienne czynności studenci. Wstępna obserwacja środowisk kampusów w Nigerii wykazała, że występują w nich zagrożenia środowiskowe i powiązane z nimi ryzyka, natomiast bark jest badań na ten temat. Niniejszy artykuł ma na celu zbadania świadomości studentów co do zagrożeń i ryzyk środowiskowych w publicznych instytucji edukacyjnych trzeciego stopnia w Stanie Oyo w Nigerii. Przeprowadzono badania kwestionariuszowe wśród 367 studentów wybranych za pomocą technik doboru próby badawczej. Analiza opisowa została wykorzystana do obliczeń średniego Indeksu Świadomości Zagrożenia (ang.: Hazard Awareness Indexes ((HAIs) ̅)) oraz średniego Indeksu Intensywności Ryzyka (ang.: Risk Severity Indexes ((RSIs) ̅)) dla instytucji. Wyniki wykazały, że studenci są świadomi zagrożeń środowiskowych i powagi związanych z nimi ryzyk w instytucjach, zarówno w akademikach, jak i na terenach akademickich. Jednak poziom świadomości był wyższy w odniesieniu do niektórych instytucji. W artykule zaprezentowano rekomendacje, zgodnie z którymi władze uczelni powinny stworzyć programy uświadamiające oraz wdrożyć polityki na rzecz podniesienia świadomości studentów co do zagrożeń i ryzyk środowiskowych w instytucjach.
Źródło:
Economic and Environmental Studies; 2016, 16, 4(40); 655-672
1642-2597
2081-8319
Pojawia się w:
Economic and Environmental Studies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of Diesel Particulate Matter Exposure of Underground Miners in Indonesia
Autorzy:
Susanto, A.
Purwanto, P.
Sunoko, H. R.
Setiani, O.
Powiązania:
https://bibliotekanauki.pl/articles/123151.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
airflow obstruction
COPD
DPM
geostatistics
PEL
spatial interpolation
severity measurement
underground miners
Opis:
In Indonesia, there are underground mines for mineral metal such copper (Cu) and gold (Au), built by tunneling towards the mineral location. The purpose of this study was to determine the mapping a concentration of diesel particulate matter (DPM) and assess the impact on health by severity measurement of airflow obstruction of the miners experiencing chronic obstructive pulmonary disease (COPD). The data of DPM were measured with NIOSH method no. 5040 and applied a geostatistical method in mapping concentration at the area of underground mining. A spirometric measurement was conducted to diagnose COPD that is done to the 314 miners. The results showed that the concentrations exceeding the permissible exposure limit (PEL) and spirometric measurement were found for 26 miners (8.3%) who experience COPD (post bronchodilator <0.70). The severity measurement of airflow obstruction of the miners experiencing COPD, severity of airflow limitation for moderate (GOLD 2) was obtained for 14 miners (54%); severe (GOLD 3) for 10 miners (38%) and very severe (GOLD 4) for 2 miners (8%). It can be concluded that the amount of DPM exposure against the severity of airflow limitation with COPD by 0.03, in which the other factors also affect the severity.
Źródło:
Journal of Ecological Engineering; 2018, 19, 4; 34-42
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of diseases on rice (Oriza sativa L.) in major growing fields of Pawe district, Northwestern Ethiopia
Autorzy:
Wubneh, Wasihun Yaregal
Bayu, Flagote Alemu
Powiązania:
https://bibliotekanauki.pl/articles/1190131.pdf
Data publikacji:
2016
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
disease
distribution
incidence
Oriza sativa
prevalence
severity
Opis:
Disease survey was carried out on 37 rice fields in Pawe woreda of Metekel zone to evaluate the prevalence and distribution of different diseases on rice. 0.5m by 0.5m (0.25m2) quadrates was used to assess the type of diseases prevailed in the field. Disease prevalence was calculated as the proportion or percentage of fields showing the disease, out of the total number of fields assessed. Disease incidences were determined as the proportion of plants showing symptoms, expressed as a percentage of the total number of plants assessed. The diseases prevalence, incidence and severity were leaf blast showed the highest prevalence, incidence as well as severity rate 80.08, 75 and 5.2%, respectively at vegetative growth stage as compared to other diseases. From vegetative to heading growth stage leaf blast, panicle blast and bacterial panicle blight were radically increased in prevalence, incidence and severity percentage; leaf blast recorded 80.08, 75, 5.2% at vegetative while 100, 96 and 7.21%, respectively at heading, panicle blast recorded 13.51, 11.15, 1.15 at vegetative while 100, 100 and 10.3% at heading stage and bacterial panicle blight was recorded 9.67, 13.46, 0.9% at vegetative while 21.2, 32.3 and 4.2%, respectively at heading growth stage. In general, the future rice diseases management research direction should be on the diseases with high incidence and severity such as leaf blast, panicle blast and bacterial panicle blight.
Źródło:
World Scientific News; 2016, 42; 13-23
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Assessment of Variation of Winter Severity Types in the Siedlce Area
Autorzy:
Radzka, Elżbieta
Rymuza, Katarzyna
Oszkiel, Milena
Powiązania:
https://bibliotekanauki.pl/articles/124442.pdf
Data publikacji:
2019
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
indicator of weather severity
winter
variation
Siedlce
Opis:
The objective of the work was to describe the thermal and snow conditions in the winter period in the Siedlce area. The average daily air temperatures were used in addition to numbers of days with a snow cover of at least 1 cm for the years 2000–2016 obtained from the Meteorological Station in Siedlce. Dates of the beginning and end of the winter season were determined. The average temperature of the winter season was determined in addition to the degree of winter severity, according to Oskin. The average, minimum and maximum values of parameters were calculated. The probability of an occurrence of individual types of winter severity was determined. Next, principal component analysis and cluster analysis were applied, the latter to the group years in terms of the days with a given type of weather in winter. It was found that – on average – the thermal winter began on 5 December and ended on 6th March. The winter was found to have lasted for 66 days. From year to year, there was observed an increase in the average number of days with mild weather. The greatest decline was found for the days with the weather typical of slightly severe and moderately severe winter. The last study years had the highest average number of days with weather typical of mild, slightly severe and moderately severe winter, and the lowest number of the days with weather typical of severe, very severe, unusually severe and extremely severe winter.
Źródło:
Journal of Ecological Engineering; 2019, 20, 1; 118-124
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badania i modelowanie bezpieczeństwa pieszych w ruchu drogowym
Analysis and modelling of pedestrian safety in road traffic
Autorzy:
Olszewski, P.
Zielińska, A.
Powiązania:
https://bibliotekanauki.pl/articles/193558.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
bezpieczeństwo pieszych
wypadki drogowe
zagrożenie pieszych
regresja logistyczna
model ciężkości wypadku
pedestrian safety
road accidents
pedestrian hazard
logistic regression
model of accident's severity
Opis:
Analiza danych o zabitych pieszych w Polsce w latach 2001-2011 na tle krajów UE. Analiza wzrostu zagrożeń pieszych według pory roku i pory dnia. Zastosowanie metody regresji logistycznej do modelowania ciężkości wypadków z pieszymi. Wyniki modelowania w postaci ilorazu szans śmierci pieszego dla różnych okoliczności potrącenia oraz funkcji prawdopodobieństwa śmierci w zależności od wieku i płci pieszego, a także charakteru obszaru i dozwolonej prędkości,
Analysis of pedestrian fatalities in Poland in the years 2001-2011 in comparison to other EU countries. F_xamination of factors inereasing fatality rates according to time of the day and time of year. Application of logistic regression for modelling pedestrian accident severity. Results in the form of odds ratios of pedestrian death under different circumstances and probability funetions of death for different pedestrian gender and age as well as different area type and road speed limit.
Źródło:
Transport Miejski i Regionalny; 2012, 4; 23-27
1732-5153
Pojawia się w:
Transport Miejski i Regionalny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
BAYESIAN CONFIDENCE INTERVALS FOR THE NUMBER AND THE SIZE OF LOSSES IN THE OPTIMAL BONUS–MALUS SYSTEM
Autorzy:
Dudzinski, Marcin
Furmanczyk, Konrad
Kocinski, Marek
Powiązania:
https://bibliotekanauki.pl/articles/453541.pdf
Data publikacji:
2013
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Katedra Ekonometrii i Statystyki
Tematy:
optimal BMS
number of claims
severity of claims
Bayesian analysis
Bayesian confidence intervals asymmetric loss functions
Opis:
Most of the so far proposed Bonus–Malus Systems (BMSs) establish a premium only according to the number of accidents, without paying attention to the vehicle damage severity. [Frangos and Vrontos 2001] proposed the optimal BMS design based not only on the number of accidents of a policyholder, but also on the size of loss of each accident. In our work, we apply the approach presented by Frangos and Vrontos to construct the Bayesian confidence intervals for both the number of accidents and the amount of damage caused by these accidents. We also conduct some simulations in order to create tables of estimates for both the numbers and the sizes of losses and to compute the realizations of the corresponding Bayesian confidence intervals. We compare the results obtained by using our simulation studies with the appropriate results derived through an application of an asymmetric loss function and its certain modification.93-104
Źródło:
Metody Ilościowe w Badaniach Ekonomicznych; 2013, 14, 1; 93-104
2082-792X
Pojawia się w:
Metody Ilościowe w Badaniach Ekonomicznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Claim modeling and insurance premium pricing under a bonus-malus system in motor insurance
Autorzy:
Ieosanurak, Weenakorn
Khomkham, Banphatree
Moumeesri, Adisak
Powiązania:
https://bibliotekanauki.pl/articles/24987758.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
bonus malus system
claim severity
exponential-GaL distribution
motor insurance
number of claims
Poisson-GaL distribution
system bonus malus
rozkład wykładniczy
ubezpieczenie komunikacyne
Opis:
Accurately modeling claims data and determining appropriate insurance premiums are vital responsibilities for non-life insurance firms. This article presents novel models for claims that offer improved precision in fitting claim data, both in terms of claim frequency and severity. Specifically, we suggest the Poisson-GaL distribution for claim frequency and the exponential-GaL distribution for claim severity. The traditional method of assigning automobile premiums based on a bonus-malus system relies solely on the number of claims made. However, this may lead to unfair outcomes when an insured individual with a minor severity claim is charged the same premium as someone with a severe claim. The second aim of this article is to propose a new model for calculating bonus-malus premiums. Our proposed model takes into account both the number and size of claims, which follow the Poisson-GaL distribution and the exponential-GaL distribution, respectively. To calculate the premiums, we employ the Bayesian approach. Real-world data are used in practical examples to illustrate how the proposed model can be implemented. The results of our analysis indicate that the proposed premium model effectively resolves the issue of overcharging. Moreover, the proposed model produces premiums that are more tailored to policyholders’ claim histories, benefiting both the policyholders and the insurance companies. This advantage can contribute to the growth of the insurance industry and provide a competitive edge in the insurance market.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 4; 637--650
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classification of Patients With Respect to Some Group of Factors
Klasyfikacja pacjentów ze względu na wybraną grupę czynników badanych
Autorzy:
Nowakowska-Zajdel, Ewa
Muc-Wierzgoń, Małgorzata
Trzpiot, Grażyna
Janczarek, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/906297.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Classification trees
severity
type and histopathology malignancy
body mass index
glucose level
Opis:
Bazując na wynikach analiz metod statystyki wielowymiarowej przeprowadzono klasyfikację grupy badanych pacjentów ze względu na grupę badanych cech. Celem analizy jest próba wyodrębnienia charakterystycznych grup czynników wśród pacjentów chorujących na raka jelita grubego w różnym stopniu zaawansowania klinicznego. Analizie poddano wybrane dane epidemiologiczne pochodzące z dokumentacji medycznej chorych z ustalonym rozpoznaniem - rak jelita grubego. Do analizy wykorzystano zmienne jakościowe: płeć, stopień zaawansowania klinicznego choroby, typ i złośliwość histopatologiczną, podział na osoby z wagą prawidłową, nadwagą i otyłością, podział ze względu na stężenie glukozy na czczo w surowicy krwi oraz współistnienie występowania innych chorób.
In this paper a classification o f examined patients was carried out based on results o f multivariate analysis using classification trees. The aim o f the analysis was to identify characteristic factors describing groups o f patients suffering from colorectal cancer with different stage o f disease. Clinical data from medical documentation o f the patients with colon cancer were analyzed. Qualitative variables such as sex, clinical stage, histopathology type o f cancer and malignancy, weight class, glucose level class and coexistence with other illnesses were used in the analysis.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies