Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sentinel-2A" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Using Sentinel-2A to identify the change in dry marginal agricultural land occupation
Autorzy:
Indarto, Indarto
Putra, Bayu T. W.
Mandala, Marga
Powiązania:
https://bibliotekanauki.pl/articles/1844401.pdf
Data publikacji:
2020
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
agricultural
change
land
mapping
marginal
Sentinel-2A
Opis:
Dry marginal agricultural land (DryMAL) potentially use as an alternative resource for crop production. DryMAL defined as land having low natural fertility due to its intrinsic properties and forming environmental factors. This study uses Sentinel-2A imagery to map the spatial extent, compare the result of the classification, and identify the change in DryMAL occupation. The area of study (461.9 km2) is part of Situbondo Regency and is located at the eastern part of East Java, Indonesia. Sentinel-2A image captured in dry-season of 2018 use for this study. Then, supervised image classification using a maximum likelihood algorithm use for image treatment and processing. Furthermore, 450 ground control points for training areas collected during the field surveys. Five bands use in the classification process. The maps produced from the classification process were then compared to the land-use map from the year 2000. The change in DryMAL occupation from 2000 to 2018 was calculated by comparing the classified and land-use map. Supervised classification yielded an overall accuracy of 95.8% and a kappa accuracy of 93.2%. The classification produced six (6) classes of land use: (1) forest, (2) pavement or built-up area, (3) irrigated paddy field, (4) non-irrigated rural area, (5) dry marginal land and (6) water body. Globally, during the last two decades, regional development led by the Regency occupied more DryMAL area for developing plantation. The effort reduces the amount of non-irrigated and converting to the plantation, pavement areas, and irrigated paddy-field.
Źródło:
Journal of Water and Land Development; 2020, 47; 89-95
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu z wykorzystaniem obrazów Sentinel-2A przetworzonych za pomocą metody głównych składowych (PCA)
Land cover classification using Sentinel-2A images processed by the principal components method (PCA)
Autorzy:
Kałużna, Urszula
Będkowski, Krzysztof
Powiązania:
https://bibliotekanauki.pl/articles/2058371.pdf
Data publikacji:
2020
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
pokrycie terenu
EGiB
Sentinel-2A
PCA
nadzorowana klasyfikacja obrazu
remote sensing
land cover
Land and Buildings Register
supervised image classification
Opis:
Celem badań jest ocena możliwości realizacji klasyfikacji nadzorowanej z wykorzystaniem obrazów (komponentów) uzyskiwanych w wyniku przetworzenia oryginalnych obrazów Sentinel-2A za pomocą metody głównych składowych (PCA). Klasyfikację wykonano w ośmiu wariantach, z wykorzystaniem algorytmów najmniejszej odległości (MD, Minimum Distance) oraz największego prawdopodobieństwa (ML, Maximum Likelihood), przy czym zastosowano oryginalne kanały 2, 3, 4, 8 Sentinel-2A oraz różną liczbę komponentów. Wyniki klasyfikacji oceniono poprzez porównanie z danymi o pokryciu terenu według Ewidencji Gruntów i Budynków (EGiB). Przeprowadzenie klasyfikacji na ograniczonej do dwóch liczbie komponentów uzyskanych w procedurze PCA tylko nieznacznie zmieniło wyniki w porównaniu do klasyfikacji na oryginalnych, nieprzetworzonych kanałach Sentinel-2A. Najbardziej zbliżone do danych EGiB rezultaty uzyskano stosując klasyfikację ML kanałów oryginalnych, nieprzetworzonych lub używając wszystkich komponentów PCA. Podjęta próba porównania pokrycia terenu ustalonego za pomocą klasyfikacji obrazów satelitarnych z klasami pokrycia, które zostały wyodrębnione z mapy EGiB wykazała, że przetworzenie mapy z postaci wektorowej na rastrową wpływa istotnie na uzyskiwane wyniki.
The aim of the research is to assess the feasibility of supervised classification using images (components) obtained through processing the original Sentinel-2A images by means of the principal component method (PCA). The classification was performed in eight variants, using the algorithms of the minimum distance (MD) and the maximum likelihood (ML), with the original channels 2, 3, 4, 8 of Sentinel-2A and a various number of components. The results of the classification were assessed by comparing them to the land coverage data of Land and Buildings Register (Ewidencja Gruntów i Budynków – EGiB). Performing the classification on a number of PCA components limited to two only slightly altered the results compared to the classification on the original, raw Sentinel-2A channels. The results most similar to the EGiB data were obtained using the ML classification of the original channels, i.e. raw channels or using all PCA components. The attempt to compare the land coverage established by the classification of satellite images to the coverage classes that were extracted from the EGiB map revealed that processing the map from vector to raster form significantly influences the obtained results.
Źródło:
Teledetekcja Środowiska; 2020, 61; 19-37
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of geomatic tools for the diachronic monitoring of landscape metrics in the northeastern algerian highlands, case of the city of Setif
Autorzy:
Kraria, Hocine
Zighmi, Karim
Chibani, Abdelmouhcene
Powiązania:
https://bibliotekanauki.pl/articles/2201671.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
LAUP
GIS
RS
PCA
Sentinel 2A
Landsat
Opis:
Geomatic tools could be used efficiently for urban development planning. The problem of the study lies in the extensive land use of terrains that are now suitable for heavy construction which slows down the development of new facilities. Furthermore, the authorities are forced to plan future settlements around Setif, at a distance of 8 to 12 kilometers from the city limits, threatening the long-term viability of construction and the ring of farmland that connects them to the core city. This must be done during the planning stage based on a diachronic analysis of all the natural and physical factors/parameters. The main objective of this research is to explore the application of landscape metrics to the analysis and monitoring of urban growth in the city of Setif, north-east of Algeria. For this purpose, our research paper uses Geographic Information System (GIS) and Remote Sensing (RS) techniques based on Principal Component Analysis (PCA) and the Angle Mapper Algorithm (SAM) target method for the analysis of urban land planning and sustainable urban planning of Setif. In the result of these analyses we propose suitability/buildability maps with more suitable construction sites. The research method is based on a 17-year time series dataset compiled from the Sentinel 2A and Landsat imagery between 2004 and 2021. Additionally, we used a cadastral Vs geotechnical overlay to estimate soil capacity. This work proves again that the integration of RS and GIS techniques allows for scientific identification of the lands suitable for urban development (LAUP).
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 67--79
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Agricultural Droughts Monitoring of Aceh Besar Regency Rice Production Center, Aceh, Indonesia – Application Vegetation Conditions Index using Sentinel-2 Image Data
Autorzy:
Sugianto
Rusdi, Muhammad
Budi, Muhammad
Farhan, Ahmad
Akhyar
Powiązania:
https://bibliotekanauki.pl/articles/2202332.pdf
Data publikacji:
2023
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
drought monitoring
VCI
vegetation condition index
sentinel-2A
vegetation health index
Opis:
Monitoring the agricultural drought of paddy rice fields is a crucial aspect of preparing for proper action in maintaining food security in Indonesia. The Aceh Province is one of Indonesia’s national rice production centers, especially Aceh Besar Regency; it includes three central districts; Indrapuri, Kuta Cot Glie, and Seulimeum. Satellite-Sentinel 2A data have been tested to monitor the drought levels of around 2,803 Ha in the three districts in this study. This study aimed to determine the drought level in Indrapuri, Kuta Cot Glie, and Seulimeum districts, Aceh Besar Regency’s paddy rice fields using Sentinel-2A data imagery. The vegetation conditions index (VCI) of Sentinel-2 data was utilized to identify a vegetative drought level in the area for the 2018, 2019, 2020, 2021, and 2022 growing seasons. The vegetation inertia index is derived from the Normalized Difference Vegetation Index (NDVI). The results show that the VCI looked volatile, but the trendline increased by four percent, from 92.56 in July 2019 to 96.08 in July 2021. Most areas on the dates investigated found that the no drought category was still dominant. The designated data analyzed found that the June 2022 data tend to be distributed to the drought in extreme, severe, moderate, and mild increases compared to the previous data investigated. This figure shows an increasing drought in the study area, and the average drought index is in the category of mild drought. In addition, there has been a trendline decline in the value of NDVI in recent years, causing agricultural land for paddy rice fields to be slightly vulnerable to drought.
Źródło:
Journal of Ecological Engineering; 2023, 24, 1; 159--171
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies