Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "self-adjoint operators" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Spontaneous decay of level from spectral theory point of view
Autorzy:
Ianovich, Eduard
Powiązania:
https://bibliotekanauki.pl/articles/2048989.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
spectral theory
quantum field theory
self-adjoint operators
absolutely continuous spectrum
spontaneous decay
Opis:
In quantum field theory it is believed that the spontaneous decay of excited atomic or molecular level is due to the interaction with continuum of field modes. Besides, the atom makes a transition from upper level to lower one so that the probability to find the atom in the excited state tends to zero. In this paper it will be shown that the mathematical model in single-photon approximation may predict another behavior of this probability generally. Namely, the probability to find the atom in the excited state may tend to a nonzero constant so that the atom is not in the pure state finally. This effect is due to that the spectrum of the complete Hamiltonian is not purely absolutely continuous and has a discrete level outside the continuous part. Namely, we state that in the corresponding invariant subspace, determining the time evolution, the spectrum of the complete Hamiltonian when the field is considered in three dimensions may be not purely absolutely continuous and may have an eigenvalue. The appearance of eigenvalue has a threshold character. If the field is considered in two dimensions the spectrum always has an eigenvalue and the decay is absent.
Źródło:
Opuscula Mathematica; 2021, 41, 6; 849-859
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On one condition of absolutely continuous spectrum for self-adjoint operators and its applications
Autorzy:
Ianovich, E.
Powiązania:
https://bibliotekanauki.pl/articles/254841.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
self-adjoint operators absolutely continuous spectrum
equi-absolute continuity
spectral density
Jacobi matrices
Opis:
In this work the method of analyzing of the absolutely continuous spectrum for self-adjoint operators is considered. For the analysis it is used an approximation of a self-adjoint operator A by a sequence of operators An with absolutely continuous spectrum on a given interval [a, b] which converges to A in a strong sense on a dense set. The notion of equi-absolute continuity is also used. It was found a sufficient condition of absolute continuity of the operator A spectrum on the finite interval [a, b] and the condition for that the corresponding spectral density belongs to the class Lp[a,b] (p ≥ 1). The application of this method to Jacobi matrices is considered. As one of the results we obtain the following assertion: Under some mild assumptions, suppose that there exist a constant C > 0 and a positive function g(x) ∈ Lp[a, b] (p ≥ 1).such that for all n sufficiently large and almost all [formula] the estimate [formula] holds, where Pn(x) are 1st type polynomials associated with Jacobi matrix (in the sense of Akhiezer) and bn is a second diagonal sequence of Jacobi matrix. Then the spectrum of Jacobi matrix operator is purely absolutely continuous on [a, b] and for the corresponding spectral density ƒ (x) we have ƒ (x) ∈ Lp[a,b].
Źródło:
Opuscula Mathematica; 2018, 38, 5; 699-718
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl2
Autorzy:
Kuzhel, S.
Patsyuck, O.
Powiązania:
https://bibliotekanauki.pl/articles/256050.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Krein spaces
extension theory of symmetric operators
operators with empty resolvent set
J-self-adjoint operators
Clifford algebra Cl2
Opis:
Let J and R be anti-commuting fundamental symmetries in a Hilbert space ℘. The operators J and R can be interpreted as basis (generating) elements of the complex Clifford algebra Cl2(J,R) := span{I, J;R, iJR}. An arbitrary non-trivial fundamental symmetry from Cl2(J,R) is determined by the formula [formula]. Let S be a symmetric operator that commutes with Cl2(J,R). The purpose of this paper is to study the sets [formula] of self-adjoint extensions of S in Krein spaces generated by fundamental symmetries [formula]. We show that the sets [formula] and [formula] are unitarily equivalent for different [formula] and describe in detail the structure of operators [formula] with empty resolvent set.
Źródło:
Opuscula Mathematica; 2012, 32, 2; 297-316
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Perturbation series for Jacobi matrices and the quantum Rabi model
Autorzy:
Charif, Mirna
Zielinski, Lech
Powiązania:
https://bibliotekanauki.pl/articles/2051897.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Jacobi matrix
unbounded self-adjoint operators
quasi-degenerate eigenvalue perturbation
perturbation series
quantum Rabi model
rotating wave approximation
Opis:
We investigate eigenvalue perturbations for a class of infinite tridiagonal matrices which define unbounded self-adjoint operators with discrete spectrum. In particular we obtain explicit estimates for the convergence radius of the perturbation series and error estimates for the Quantum Rabi Model including the resonance case. We also give expressions for coefficients near resonance in order to evaluate the quality of the rotating wave approximation due to Jaynes and Cummings. .
Źródło:
Opuscula Mathematica; 2021, 41, 3; 303-333
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On extensions of matrix-valued Hahn–Sturm–Liouville operators
Autorzy:
Allahverdiev, Bilender
Tuna, Huseyin
Powiązania:
https://bibliotekanauki.pl/articles/2078952.pdf
Data publikacji:
2021
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Hahn–Sturm–Liouville equation
minimal and maximal operators
maximal dissipative
accumulative and self-adjoint extensions
Opis:
In this paper, we study matrix-valued Hahn–Sturm–Liouville equations. We give an existence and uniqueness result. We introduce the corresponding maximal and minimal operators for this system, and some properties of these operators are investigated. Finally, we characterize extensions (maximal dissipative, maximal accumulative and self-adjoint) of the minimal symmetric operator.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2021, 75, 2; 1-12
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies