Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "self organizing map" wg kryterium: Temat


Tytuł:
Using Singular Value Decomposition (SVD) as a solution for search result clustering
Autorzy:
Abdulla, H. D.
Abdelrahman, A. S.
Snasel, V.
Powiązania:
https://bibliotekanauki.pl/articles/377259.pdf
Data publikacji:
2014
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
singular value decomposition
clustering
self-organizing map
Opis:
There are many search engines in the web, but they return a long list of search results, ranked by their relevancies to the given query. Web users have to go through the list and examine the titles and (short) snippets sequentially to identify their required results. In this paper we present how usage of Singular Value Decomposition (SVD) as a very good solution for search results clustering. Results are presented by visualizing neural network. Neural network is responsive for reducing result dimension to two dimensional space and we are able to present result as a picture that we are able to analyze.
Źródło:
Poznan University of Technology Academic Journals. Electrical Engineering; 2014, 80; 71-78
1897-0737
Pojawia się w:
Poznan University of Technology Academic Journals. Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Building a cognitive map using an SOM2
Autorzy:
Tokunaga, K.
Furukawa, T.
Powiązania:
https://bibliotekanauki.pl/articles/384201.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
self-organizing map
map building
place cells
head direction cells
autonomous robot
Opis:
In this paper, we propose a new method for building an environmental map in a self-organizing manner using visual information from a mobile robot. This method is based on a Higher Rank of Self-Organizing Map (SOM ), in which Kohonen’s SOM is extended to create a map of data distributions (set of manifolds). It is expected that the “SOM” is capable of creating an environmental map in a self-organizing manner from visual information, since the set of visual information obtained from each position in the environment forms a manifold at every position. We also show the effectiveness of the proposed method.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 2; 39-47
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie samoorganizujących się map cech w diagnostyce silników o zapłonie samoczynnym
Application of self-organizing maps of characteristics in the diagnostics of self-ignition engines
Autorzy:
Klimkiewicz, M.
Powiązania:
https://bibliotekanauki.pl/articles/287341.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Inżynierii Rolniczej
Tematy:
silnik o zapłonie samoczynnym
diagnostyka
mapa cech
sieć Kohonena
diesel engine
diagnostics
self-organizing map
Kohonen map
Opis:
Wykorzystano właściwości samoorganizujących się map cech w wykrywaniu uszkodzeń silników z zapłonem samoczynnym. Zbudowano model, w którym zmiennymi wejściowymi są symptomy zaobserwowane przez użytkownika wskazujące na niewłaściwą pracę silnika oraz sprawdzenia i pomiary wykonane przez mechanika. Za pomocą mapy topologicznej zlokalizowano podobne skupienia przypadków. Neuronom radialnym mapy nadano etykiety zgodne z nazwami mogących się pojawić usterek.
The researchers made use of self-organizing properties of maps of characteristics in detecting defects of self-ignition engines. A model was developed with the following input variables: the symptoms observed by user that indicate abnormal engine work, and checks and measurements carried out by a mechanic. Similar concentrations of clusters were located using a topological map. Radial neurons in the map were marked with labels consistent with names of defects, which may possibly occur.
Źródło:
Inżynieria Rolnicza; 2008, R. 12, nr 7(105), 7(105); 101-108
1429-7264
Pojawia się w:
Inżynieria Rolnicza
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A connectionist computational method for face recognition
Autorzy:
Pujol, F. A.
Mora, H.
Girona-Selva, J. A.
Powiązania:
https://bibliotekanauki.pl/articles/330558.pdf
Data publikacji:
2016
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
pattern recognition
face recognition
neural network
self organizing map
rozpoznawanie wzorca
rozpoznawanie twarzy
sieć neuronowa
samodzielne organizowanie map
Opis:
In this work, a modified version of the elastic bunch graph matching (EBGM) algorithm for face recognition is introduced. First, faces are detected by using a fuzzy skin detector based on the RGB color space. Then, the fiducial points for the facial graph are extracted automatically by adjusting a grid of points to the result of an edge detector. After that, the position of the nodes, their relation with their neighbors and their Gabor jets are calculated in order to obtain the feature vector defining each face. A self-organizing map (SOM) framework is shown afterwards. Thus, the calculation of the winning neuron and the recognition process are performed by using a similarity function that takes into account both the geometric and texture information of the facial graph. The set of experiments carried out for our SOM-EBGM method shows the accuracy of our proposal when compared with other state-of the-art methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2016, 26, 2; 451-465
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie sieci neuronowej Kohonena do wizualizacji danych MPG
Use of Kohonen neural network in MPG data visualisation
Autorzy:
Oszutowska-Mazurek, D. A.
Powiązania:
https://bibliotekanauki.pl/articles/135818.pdf
Data publikacji:
2016
Wydawca:
Wyższa Szkoła Techniczno-Ekonomiczna w Szczecinie
Tematy:
sieć neuronowa Kohonena
samoorganizujące się mapy
SOM
wizualizacja danych
dane MPG
Kohonen neural network
self organizing map
Opis:
Wstęp i cel: Zastosowanie sieci neuronowych Kohonena zapewnia zmniejszenie wielowymiarowości danych. Wizualizacja w postaci map samoorganizujących się (SOM) jest użytecznym narzędziem do wstępnego kastrowania (grupowania) danych. Materiał i metody: Wizualizację przeprowadzona dla rzeczywistych danych, udostępnionych przez uniwersytet w Kalifornii za pomocą oprogramowania SNNS v.4.3. Głównym celem pracy jest zastosowanie sieci neuronowych Kohonena zapewniające zmniejszenie wielowymiarowości danych. Wyniki: Otrzymano wizualizacje danych wskazujące jednoznacznie na dodatnie i ujemne korelacje danych MPG. Wniosek: Mapy samoorganizujące się mogą być dedykowane wizualizacji danych wielowymiarowych jednak wyniki zależą od sposobu mapowania danych wejściowych, zwłaszcza o charakterze jakościowym, nawet jeśli stosowana jest normalizacja każdego z parametrów.
Introduction and aim: The use of Kohonen neural network ensures the decrease of data multidimensionality. Visualisation called Self organized maps is useful tool for preliminary data clustering. Material and methods: The visualisation of real data set was obtained with the use of program SNNS v.4.3 for real dataset from California University. The main aim of this paper is the use of Kohonen neural network to ensure the reduction of multidimensional data. Results: Obtained visualisations of data indicate unambiguously positive and negative correlations for MPG data Conclusion: Self organising maps could be dedicated to multidimensional data visualisation and preliminary quality assessment, but the results depend on the mapping method of input data, especially quantity type, even if normalisation of every parameter is provided.
Źródło:
Problemy Nauk Stosowanych; 2016, 4; 19-30
2300-6110
Pojawia się w:
Problemy Nauk Stosowanych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solid lubricated bearings performance degradation assessment: A fuzzy self-organizing map method
Ocena obniżenia charakterystyk łożysk ze smarem stałym: metoda rozmytych samoorganizujących się map
Autorzy:
Zhang, Ch.
Wang, S.
Powiązania:
https://bibliotekanauki.pl/articles/301012.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
solid lubricated bearings
performance degradation
fuzzy self-organizing map
łożyska ze smarem stałym
obniżenie charakterystyk
rozmyta mapa samoorganizująca się
Opis:
Solid lubricated bearings are common components in space mechanisms, and their reliability and performance degradation assessment are very crucial. In this study, a fuzzy self-organizing map method is used to perform performance degradation assessment. Feature vectors are constructed by indices of vibration as well as friction torque signal. Self-organizing map is then used to perform performance degradation assessment and the subjection of each feature vector to normal cluster on output layer is used as degradation indicator. Accelerated life test results show that this method can make effective performance degradation assessment and describe degradation degree in the whole life time.
Łożyska ze smarem stałym to powszechnie stosowane elementy urządzeń, a ich niezawodność i ocena degradacji charakterystyk są bardzo istotne. W przedstawionej pracy wykorzystano metodę rozmytych samoorganizujących się map do oceny obniżenia charakterystyk. Wektory cech skonstruowano za pomocą wskaźników wibracji, jak również sygnału momentu tarcia. Następnie dokonano oceny obniżenia charakterystyk z wykorzystaniem samoorganizującej się mapy, a za wskaźnik degradacji przyjęto przynależność każdego wektora cech do normalnej grupy w warstwie wyjściowej. Wyniki badań przyspieszonych pokazują, że przy użyciu omawianej metody można dokonywać skutecznej oceny obniżenia charakterystyk a także opisywać stopień degradacji w całym okresie eksploatacji.
Źródło:
Eksploatacja i Niezawodność; 2013, 15, 4; 397-402
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Profiling bell’s palsy based on House - Brackmann score
Autorzy:
Song, I.
Vong, J.
Yen, N. Y..
Diederich, J.
Yellowlees, P.
Powiązania:
https://bibliotekanauki.pl/articles/91551.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
facial nerve
palsy
support vector machines
SVMs
Emergent Self-Organizing Map
ESOM
House-Brackmann score
facial paralysis
facial image
Opis:
In this study, we propose to diagnose facial nerve palsy using Support Vector Machines (SVMs) and Emergent Self-Organizing Map (ESOM). This research seeks to analyze facial palsy domain using facial features and grade the degree of nerve damage based on the House-Brackmann score. Traditional diagnostic approaches involve a medical doctor recording a thorough history of a patient and determining the onset of paralysis, rate of progression and so on. The most important step is to assess the degree of voluntary movement of the facial nerves and document the grade of facial paralysis using House- Brackmann score. The significance of the work is the attempt to understand the diagnosis and grading processes using semi-supervised learning with the aim of automating the process. The value of the research is in identifying and documenting the limited literature seen in this area. The use of automated diagnosis and grading greatly reduces the duration of medical examination and increases the consistency, because many palsy images are stored to provide benchmark references for comparative purposes. The proposed automated diagnosis and grading are computationally efficient. This automated process makes it ideal for remote diagnosis and examination of facial palsy. The profiling of a large number of facial images are captured using mobile phones and digital cameras.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 1; 41-50
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pulse shape discrimination of neutrons and gamma rays using kohonen artificial neural networks
Autorzy:
Tambouratzis, T.
Chernikova, D.
Pzsit, I.
Powiązania:
https://bibliotekanauki.pl/articles/91759.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
shape
neutron
discrimination
gamma rays
Kohonen artificial neural networks
ANNs
linear vector quantisation
LVQ
self-organizing map
SOM
pulse shape discrimination
PSD
Opis:
The potential of two Kohonen artificial neural networks (ANNs) - linear vector quantisation (LVQ) and the self organising map (SOM) - is explored for pulse shape discrimination (PSD), i.e. for distinguishing between neutrons (n’s) and gamma rays (’s). The effect that (a) the energy level, and (b) the relative size of the training and test sets, have on identification accuracy is also evaluated on the given PSD dataset. The two Kohonen ANNs demonstrate complementary discrimination ability on the training and test sets: while the LVQ is consistently more accurate on classifying the training set, the SOM exhibits higher n/ identification rates when classifying new patterns regardless of the proportion of training and test set patterns at the different energy levels; the average time for decision making equals ˜100 μs in the case of the LVQ and ˜450 μs in the case of the SOM.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2013, 3, 2; 77-88
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adaptive modelling of spatial diversification of soil classification units
Adaptacyjne modelowanie przestrzennego zróżnicowania jednostek klasyfikacyjnych gleb
Autorzy:
Urbański, K.
Gruszczyński, S.
Powiązania:
https://bibliotekanauki.pl/articles/292945.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
adaptive algorithms
self-organizing map (SOM)
soil classification
Upper Silesian Industrial Region
algorytmy adaptacyjne
Górnośląski Okręg Przemysłowy (GOP)
klasyfikacja gleb
samoorganizująca mapa (SOM)
Opis:
The article presents the results of attempts to use adaptive algorithms for classification tasks different soils units. The area of study was the Upper Silesian Industrial Region, which physiographic and soils parameters in the form of digitized was used in the calculation. The study used algorithms, self-organizing map (SOM) of Kohonen, and classifiers: deep neural network, and two types of decision trees: Distributed Random Forest and Gradient Boosting Machine. Especially distributed algorithm Random Forest (algorithm DRF) showed a very high degree of generalization capabilities in modeling complex diversity of soil. The obtained results indicate, that the digitization of topographic and thematic maps give you a fairly good basis for creating useful models of soil classification. However, the results also showed that it cannot be concluded that the best algorithm presented in this research can be regarded as a general principle of system design inference.
Wraz z rozwojem technologii informatycznych następuje stopniowa zmiana podejścia do dokumentacji kartograficznej obiektów przyrodniczych, w tym gleb. Podstawowymi cechami dowolnej klasyfikacji, których przedmiotem są gleby, jest wielowymiarowość jednostek (nie ma pojedynczej właściwości, możliwej do wyznaczenia w drodze pomiaru, która wystarczałaby do jednoznacznego przypisania pedonu do określonej klasy w stosowanych skalach klasyfikacyjnych gleb), w związku z czym właściwe wydaje się wykorzystanie do tego celu dostępnych komputerowych metod przetwarzania danych. Modelowanie przestrzennego zróżnicowania gleb na podstawie przesłanek natury fizjograficznej, odtworzonych na podstawie digitalizacji istniejących materiałów kartograficznych, jest podstawą do tworzenia przestrzennych baz danych przechowywanych w wersji cyfrowej. Inaczej niż w typowej kartografii tematycznej zawierającej treści glebowo-siedliskowe, modele te wskazują na prawdopodobieństwo a priori występowania określonej jednostki glebowej w określonym położeniu, nie zaś bezwzględną przynależność terenu do niej. Taka interpretacja wymaga zbudowania stosownego algorytmu wiążącego czynniki natury geologicznej i fizjograficznej z jednostkami glebowymi. Do tego celu często wykorzystuje się tak zwane algorytmy adaptacyjne, umożliwiające elastyczne tworzenie modeli zależności bazujących na danych. W pracy przedstawiono dwa warianty doboru parametrów przetwarzania danych fizjograficzno-glebowych potencjalnie przydatnych do tych celów. Wykorzystano dane pochodzące z bazy danych fizjograficznoglebowych z rejonu GOP (Górnośląski Okręg Przemysłowy) uzyskanych w wyniku digitalizacji materiałów kartograficznych. Analizie poddano wyłącznie tereny użytków rolnych: gruntów ornych (R) i trwałych użytków zielonych (Ł i Ps). Na obszarze o powierzchni 1 km2 wyodrębniono 6,4 mln jednostek tworzących siatkę kwadratów o rozmiarach 20 × 20 m. Wykorzystane zostały algorytmy samoorganizującej mapy (SOM) Kohonena oraz klasyfikatory – głęboka sieć neuronowa, oraz dwa rodzaje drzew decyzyjnych – rozproszony las losowy (ang. Distributed Random Forest) i wzmacniane drzewa losowe (ang. Gradient Boosting Machine). Szczególnie algorytm rozproszonego lasu losowego (algorytm DRF) wykazał bardzo wysoki stopień zdolności generalizacyjnej w modelowaniu zróżnicowania kompleksów glebowych.
Źródło:
Journal of Water and Land Development; 2016, 30; 127-139
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies