Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "sea temperature" wg kryterium: Temat


Tytuł:
Zmienność temperatury powierzchni morza w rejonie Spitsbergenu (1982-2002) jako przejaw współcześnie zachodzących zmian klimatycznych
Changeability in sea surface temperature in the region of Spitsbergen (1982-2002) reflecting climatic changes observed at present
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/260692.pdf
Data publikacji:
2004
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatury powierzchni morza
zmiany klimatyczne
Spitsbergen
temperatury powietrza
sea surface temperature
climatic changes
air temperature
Opis:
This work has analysed changeability in water surface temperature in sea areas in the direct vicinity of West Spitsbergen. (Fig. 1). The analysis made use of SST (Sea Surface Temperature) from Reynolds?s data, covering mean monthly values of grids 1 x 1° from the period 1982-2002 (21 years). The changes in SST have been examined both monthly and yearly in 48 grids originating from the region 76-80°N, 006-020°E. A noticeable increase in water temperature was noted in the entire analysed area. The highest positive annual trends in water temperature were noted in the region 77-78°N, 006-007°E located west of Spitsbergen. In this area the mean yearly trends in SST values exceed +0.11°C/year and are highly statistically relevant (p<0.001). The values of trend noted in the areas in the direct vicinity of SW coast of Spitsbergen are +0.07°C to +0.08°C/year (at the latitudes 76-78°N). Farther north the values of the trend are remarkably lower, yet they are still highly statistically relevant. At 80°N the SST trend ranges from +0.006°C to +0.013°C and grows when moving west. At 79°N the observed trend of mean yearly value of SST is within the range from +0.04°C (010°E) to +0.07°C/year (006°E). This indicates that the mean yearly temperature of water in the region west of Spitsbergen has increased by more than 2.5°C over the period of the last 21 years and in coastal waters SW of Spitsbergen by about 1.5°C to 1.7°C. The lowest increase in SST was noted in waters at 80°N, where it did not exceed 0.3°C within 21 years. The increase in water temperature is distributed unevenly in time - since 1995 the rate of the increase has been rapidly growing (see Fig. 2). The changes in yearly SST values, as the analysis indicated, are influenced by the changes in temperature noted mainly in the period from September to February. This proves that the heat sources carried by the West Spitsbergen Current are increasing and that the summer warming of waters is becoming more and more significant. Interannual changeability in SST in the remaining months proves to be relatively low, in extreme cases being zero (water completely frozen). It can be observed especially at 80°N. The yearly changeability in values of SST in waters around SE coasts of Spitsbergen (Storfjorden) is mainly influenced by the temperature of waters in autumn (August ? October), which means that the influence of the summer warming of waters on the yearly SST value in this area has increased.
Źródło:
Problemy Klimatologii Polarnej; 2004, 14; 79-86
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmienność maksymalnej miąższości czynnej warstwy zmarzliny w rejonie Bellsundu (W Spitsbergen) w okresie 1986-2009
Changeability of maximal thickness of active permafrost layer in the Bellsund region (W Spitsbergen) in the period 1986-2009
Autorzy:
Marsz, A. A
Pękala, K.
Repelewska-Pękalowa, J.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/261035.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
wieloletnia zmarzlina
warstwa czynna
temperatura powietrza
cyrkulacja atmosferyczna
temperatura powierzchni morza
Spitsbergen
permafrost
active layer
air temperature
atmospheric circulation
sea surface temperature
Opis:
W pracy przebadano wpływ temperatury powietrza, cyrkulacji atmosferycznej i temperatury powierzchni morza na Prądzie Zachodniospitsbergeńskim na zmiany maksymalnej miąższości czynnej warstwy zmarzliny na Calypsostrandzie (Bellsund) w latach 1986-2009. Stwierdzono, że podstawowym czynnikiem klimatycznym, regulującym tą zmienność jest temperatura powietrza w Svalbard-Lufthavn, co pozwala na rekonstrukcję przebiegu zmian miąższości czynnej warstwy zmarzliny na Calypsostrandzie w okresie 1911-2009. W badanym okresie nie zachodzą istotne związki między miąższości czynnej warstwy zmarzliny a zmiennością wskaźników cyrkulacji hemisferycznej (AO) i regionalnej (NAO). Bardzo silny wpływ na miąższość czynnej warstwy zmarzliny na Calypsostrandzie wywierają zmiany temperatury powierzchni Morza Grenlandzkiego w rejonie przepływu ciepłego Prądu Zachodniosptsbergeńskiego.
The measurements of thickness of the sling part of permafrost thawing in summer i.e. permafrost active layer were made on Spitsbergen in the Bellsund region in 1986-2009 within the polar expedition programs accomplished by Maria Curie Skłodowska University, Lublin. The investigations included the seaside plain Calypsostranda situated on the western side of Recherche Fiord in the forefield of the glaciers Scott and Renard (Fig. 1) constituting a complex of raised marine terraces formed during the glacioisostatic movements. Maximal thickness of active permafrost (CWCmax) was determined using the sounding method in 10 chosen points localized within the geocomplexes typical of tundra (Fig. 2). The average many years' maximal values of active layer thickness are presented in Table 1. The paper presents the results of studies on the effect of air temperature, atmospheric circulation and sea surface temperature on Western Spitsbergen Current on the variation of maximal thickness of active permafrost layer. As follows from the studies the interyear changes of maximal thickness of the active layer on Calypsostranda are relatively susceptible to the changes of air temperature which indicates prompt susceptibility to changes. The tendency towards the increase of ground thawing depth on Calypsostranda in 23 years under consideration is not stable and can change significantly depending on temperature. Though there is no doubt that during the last 4-5 years there have appeared signs of quickened increase of active layer thickness on Calypsostranda (Fig. 4), the conclusion about permanent degradation of permafrost seems to be risky at present. Of the climatic factors the essential one affecting the interannual changeability of maximal thickness of the active layer on Calypsostranda is air temperature in Svalbard-Lufthaven. The regression analysis showed (Equation 1) that the variance CWmax is explained best by the merged May and June temperatures (SVsumT_V-VI) and the average March temperature (SVT_III) (Fig. 5). Changeability of these both variables accounts for 83% variance CWCmax. Equation [1] allows to reconstruct the course of changes of maximal thickness of the active layer on Calypsostranda in 1911-2009 (Fig. 6). In the studied period distinct and essential connections between CWCmax on Calypsostranda and changeability of hemispheric circulation indices (AO) or regional (NAO) were not found. However, temperature changes of Greenlandic Sea surface in the region of warm Western Spitsbergen Current flow (Table 3) affect significantly on air temperature on Spitsbergen and as a result on active layer thickness on Calypsostranda. As the hitherto course of maritime processes indicates a gradual decrease in heat resources carried by Western Spitsbergen Current, one can deduce that air temperature in the region of Spitsbergen will drop in near future. That will probably lead to a decrease in thawing depth on Calypsostranda. Differentiation in active layer thickness is dependent on local factors such as configuration, aspect of slopes, vegetation cover as well as kind and extent of water mobility in covers as it was reported earlier.
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 133-154
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany zlodzenia Morza Karskiego w latach 1979-2015. Podejście systemowe
Changes of sea ice extent on the Kara Sea in the years 1979-2015. System approach
Autorzy:
Styszyńska, A.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260907.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
pokrywa lodowa
zmiany powierzchni lodów
THC
temperatura powietrza
temperatura wody powierzchniowej
Morze Karskie
Arktyka
Atlantyk Północny
ice cover
changes in sea-ice extent
air temperature
sea surface temperature
Kara Sea
Arctic
North Atlantic
Opis:
Praca omawia zmiany powierzchni lodów na Morzu Karskim i mechanizmy tych zmian. Scharakteryzowano przebieg zmian zlodzenia, ustalając momenty skokowego zmniejszenia się letniej powierzchni lodów. Rozpatrzono wpływ cyrkulacji atmosferycznej, zmian temperatury powietrza i zmian zasobów ciepła w wodach na zmiany zlodzonej tego morza. Analizy wykazały, że wszystkie zmienne opisujące zarówno stan zlodzenia jak i stan elementów klimatycznych są ze sobą wzajemnie powiązane przez różnego rodzaju sprzężenia zwrotne. W rezultacie tworzy się rekurentny system, w którym zmiany powierzchni lodów, wpływając na przebieg innych elementów systemu (temperaturę powietrza, temperaturę wody powierzchniowej) w znacznej części same sterują swoim rozwojem. Zmiennością całego tego systemu sterują zmiany intensywności cyrkulacji termohalinowej (THC) na Atlantyku Północnym, dostarczając do niego zmienne ilości energii (ciepła). Reakcja systemu zlodzenia Morza Karskiego na zmiany natężenia THC następuje z 6.letnim opóźnieniem.
The work discusses the changes in the ice extent on the Kara Sea in the years 1979-2015, i.e. in the period for which there are reliable satellite data. The analysis is based on the average monthly ice extent taken from the database AANII (RF, St. Peterburg). 95% of the variance of average annual ice extent explains the variability of the average of ice extent in ‘warm' season (July-October). Examination of features of auto-regressive course of changes in ice extent shows that the extent of the melting ice area between June and July (marked in the text RZ07-06) can reliably predict the ice extent on the Kara Sea in August, September, October and November as well as the average ice extent in a given year. Thus the changes in ice extent can be treated as a result of changes occurring within the system. Analysis of the relationship of changes in ice extent and variable RZ07-06 with the features of atmospheric circulation showed that only changes in atmospheric circulation in the Fram Strait (Dipole Fram Strait; variable DCF03-08) have a statistically significant impact on changes in ice extent on the Kara Sea and variable RZ07-06. The analysis shows no significant correlation with changes in ice extent or AO (Arctic Oscillation), or NAO (North Atlantic Oscillation). Variable RZ07-06 and variable DCF03-08 are strongly correlated and their changes follow the same pattern. Analysis of the relationship of changes in ice extent and variable RZ07-06 with changes in air temperature (the SAT) showed the presence of strong relationships. These correlations differ significantly depending on the region; they are much stronger with changes in air temperature in the north than in the south of the Kara Sea. Temperature of cold period (average temperature from November to April over the Kara Sea, marked 6ST11-04) has a significant effect on the thickness of the winter ice and in this way the thickness of ice in the next melting season becomes part of the "memory" (retention) of past temperature conditions. The thickness of the winter ice has an impact on the value of the variable RZ07-06 and on changes in ice extent during the next ‘warm’ season. As a result, 6ST11-04 explains 62% of the observed variance of the annual ice extent on the Kara Sea. SAT variability in the warm period over the Kara Sea (the average of the period July-October, marked 6ST07-10) explains 73% of the variance of annual ice extent. SAT variability of the N part of the Kara Sea (Ostrov Vize, Ostrov Golomjannyj), which explains 72-73% of the variance ice extent during this period, has particularly strong impact on changes in ice extent during warm period. These stations are located in the area where the transformed Atlantic Waters import heat to the Kara Sea. Analysis of the impact of changes in sea surface temperature (SST) variability on sea ice extent indicated that changes in SST are the strongest factor that has influence on ice extent. The variability of annual SST explains 82% of the variance of annual ice extent and 58% of the variance of the variable RZ07-06. Further analysis showed that the SAT period of warm and annual SAT on the Kara Sea are functions of the annual SST (water warmer than the air) but also ice extent. On the other hand, it turns out that the SST is in part a function of ice extent. All variables describing the ice extent and its changes as well as variables describing the nature of the elements of hydro-climatic conditions affecting the changes in ice extent (atmospheric circulation, SAT, SST) are strongly and highly significantly related (Table 9) and change in the same pattern. In this way, the existence of recursion system is detected where the changes in ice extent eventually have influence on ‘each other’ with some time shift. The occurrence of recursion in the system results in very strong autocorrelation in the course of inter-annual changes in ice extent. Despite the presence of recursion, factors most influencing change in ice extent, i.e. the variability in SST (83% of variance explanations) and variability in SAT were found by means of multiple regression analysis and analysis of variance. Their combined impact explains 89% of the variance of the annual ice extent on the Kara Sea and 85% of the variance of ice extent in the warm period. The same rhythm of changes suggests that the system is controlled by an external factor coming from outside the system. The analyses have shown that this factor is the variability in the intensity of the thermohaline circulation (referred to as THC) on the North Atlantic, characterized by a variable marked by DG3L acronym. Correlation between the THC signal and the ice extent and hydro-climatic variables are stretched over long periods of time (Table 10). The system responds to changes in the intensity of THC with a six-year delay, the source comes from the tropical North Atlantic. Variable amounts of heat (energy) supplied to the Arctic by ocean circulation change heat resources in the waters and in SST. This factor changes the ice extent and sizes of heat flux from the ocean to the atmosphere and the nature of the atmospheric circulation, as well as the value of the RZ07-06 variable, which determines the rate of ice melting during the ‘warm’ season. A six-year delay in response of the Kara Sea ice extent to the THC signal, compared to the known values of DG3L index to the year 2016, allows the approximate estimates of changes in ice extent of this sea by the year 2023. In the years 2017 to 2020 a further rapid decrease in ice extent will be observed during the ‘warm' period (July-October), in this period in the years 2020-2023 ice free conditions on the Kara Sea will prevail. Ice free navigation will continue from the last decade of June to the last decade of October in the years 2020-2023. Since the THC variability includes the longterm, 70-year component of periodicity, it allows to assume that by the year 2030 the conditions of navigation in the Kara Sea will be good, although winter ice cover will reappear.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 109-156
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na Północnej Drodze Morskiej (1979-2016)
Changes of sea surface temperature in the Russian Arctic Seas and their implications for shipping in the Northern Sea Route (1979-2016)
Autorzy:
Styszyńska, A.
Pastusiak, T.
Powiązania:
https://bibliotekanauki.pl/articles/260798.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura wody powierzchniowej
zmiany temperatury wody
Północna Droga Morska
Arktyka Rosyjska
sea surface temperature
changes in water temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury wody powierzchniowej na morzach Arktyki Rosyjskiej w latach 1979-2016. Stwierdzono, że w badanym okresie następował powolny wzrost temperatury wody. Jednakże tylko na Morzu Barentsa był on istotny statystycznie we wszystkich miesiącach roku, a w SW części Morza Karskiego oraz w zachodniej części Morza Czukockiego w okresie od czerwca do grudnia. W analizowanym 38.leciu największy wzrost temperatury wody powierzchniowej miał miejsce na Morzu Wschodniosyberyjskim (+0,57°C/10 lat w sierpniu i +0,44°C/10 lat we wrześniu) oraz w SW części Morza Karskiego w lipcu (+0,53°C/10 lat). W dalszym ciągu na wszystkich morzach, poza Morzem Barentsa, do czerwca włącznie temperatura wody ma wartości niższe od temperatury jej zamarzania przy swoistym dla danego morza zasoleniu. Najpóźniej temperaturę zamarzania osiągają wody Morza Barentsa gdzie w ostatniej dekadzie (2006-2015) na podejściu do północnego wejścia na PDM rzadko kiedy temperatura wody spadała poniżej temperatury zamarzania oraz wody Morza Czukockiego (w grudniu). Oznacza to, że statki pokonujące PDM w listopadzie będą miały szansę przepłynąć ją po „czystej” wodzie lub w cienkich, młodych lodach, które dla współczesnych statków nie stanowią większego zagrożenia.
The paper discusses changes of the mean monthly sea surface temperature on the Russian Arctic seas in the years 1979-2016. It was found that during the period under investigation there was a slow increase in water temperature. However, only in the Barents Sea it was statistically significant in all months of the year, and in the SW part of the Kara and western Chukchi seas from June to December. In the analyzed 38 years the highest rise in surface water temperature was recorded in the East Siberian Sea (+0.57°C/decade in August and +0.44°C/decade in September) and in the SW Kara Sea in July (+0.53°C/decade). Still on all these seas, except for the Barents Sea, until June inclusive, the water temperature was lower than its freezing temperature for a particular salinity specific for the sea. At the latest, freezing temperatures reached the waters of the Barents Sea, where in the last decade (2006-2015) at the approach to the north entrance of the Northern Sea Route (NSR) rarely water temperature has fallen below the freezing point. At the same time, the Chukchi Sea waters reached freezing temperatures in December. This means that vessels sailing through the NSR in November will have the chance to pass it through "ice free" water or in thin, young ice, which for modern ships is not a major threat.
Źródło:
Problemy Klimatologii Polarnej; 2016, 26; 165-177
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury powietrza na morzach Arktyki Rosyjskiej i ich konsekwencje dla żeglugi na północnej drodze morskiej
Changes of air temperature in Russian Arctic seas and their implications for shipping in the northern sea route
Autorzy:
Pastusiak, T.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260788.pdf
Data publikacji:
2015
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powietrza
Północna Droga Morska
Arktyka Rosyjska
air temperature
Northern Sea Route
Russian Arctic
Opis:
Praca omawia zmiany średniej miesięcznej temperatury powietrza na morzach Arktyki Rosyjskiej w latach 1988-2013. Wartości średnie wieloletnie z tego okresu porównano z danymi podawanymi w locjach rosyjskich dla okresu 1936-1987. Stwierdzono, że w badanym okresie na wszystkich badanych stacjach doszło do wzrostu temperatury powietrza. Największy wzrost miał miejsce w sezonie chłodnym (o 1,5-2 deg). W sezonie ciepłym wzrosty były znacznie mniejsze i na ogół nie przekraczały 1 deg. Tylko na 3 stacjach doszło do wydłużenia okresu występowania dodatnich średnich miesięcznych wartości temperatury powietrza (Kanin Nos – w maju, O. Biełyj – w czerwcu, O. Wrangla – we wrześniu). Choć na wszystkich stacjach nastąpił wzrost wartości średnich, to daleko nie wszystkie te zmiany są istotne statystycznie. W latach 1988-2013, w pełni sezonu ciepłego, w lipcu i sierpniu, temperatura powietrza nie stanowi żadnego utrudnienia dla żeglugi na Północnej Drodze Morskiej. Występująca okresowo, w czerwcu i wrześniu, niska lub nawet bardzo niska temperatura powietrza stanowić może tylko pewne utrudnienie dla żeglugi na PDM, związane przede wszystkim z prowadzeniem na statku lub w porcie prac na wolnym powietrzu oraz z występowaniem zjawisk pochodnych – oblodzeniem statku, ograniczoną widzialnością i utrzymywaniem się (w czerwcu) lub tworzeniem się już (we wrześniu) nowej pokrywy lodowej.
The paper discusses changes of the mean monthly air temperature on the Russian Arctic seas in the years 1988-2013. The mean long-term values for the period compared with the data contained in the Russian Sailing Directions for the period 1936-1987. There was an increase in air temperature on all studied stations in the analyzed period. The largest increase occurred in a cold season (1.5-2 degrees Celsius). Increases of temperature in the warm season were much smaller than in cold period and were generally not exceed 1 degree Celsius. Only at 3 stations the lengthening of the period of average monthly positive air temperature (Kanin Nos Peninsula – in May, Island Belyy – in June, Wrangel Island – in September) was observed. An increase of average values has been observed at all stations, but not all these changes were statistically significant. In the years 1988-2013, while fully warm season – in July and August – air temperature does not pose any difficulties for the navigation on the Northern Sea Route. Occurring periodically – in June and September – a low or even very low air temperature may only cause some difficulties for navigation on the Northern Sea Route. This is primarily related to navigation of the vessel at sea or in port during outdoor work. It is also associated with the occurrence of related phenomena – limited visibility, icing the vessel and the persistence of old (in June) or the formation of already new (in September) ice cover.
Źródło:
Problemy Klimatologii Polarnej; 2015, 25; 227-238
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury powierzchni Morza Czukockiego (1982-2008)
Changes of sea surface temperature at the Chukchi Sea (1982-2008)
Autorzy:
Zblewski, S.
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/261049.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Morze Czukockie
temperatura powierzchni morza
cyrkulacja atmosferyczna
sea surface temperature
atmospheric circulation
Opis:
Praca charakteryzuje zmiany temperatury powierzchni Morza Czukockiego zachodzące w okresie 1982-2008 oraz wpływ na te zmiany cyrkulacji atmosferycznej. Stwierdzono występowanie dodatnich, istotnych statystycznie, miesięcznych i rocznych trendów temperatury powierzchni morza (TPM), nierównomiernie rozłożonych w przestrzeni. Obserwuje się występowanie asynchronicznych związków między cyrkulacją atmo-sferyczną a TPM, przy czym zmiany cyrkulacji atmosferycznej wyprzedzają w czasie zmiany TPM. W badanym okresie najsilniejszy wpływ na miesięczne i roczne zmiany TPM ma charakter cyrkulacji atmosferycznej występu-jącej w dłuższych okresach – wiosną, a nawet w całym okresie marzec-sierpień i marzec-wrzesień, poprzedzającym moment wystąpienia maksimum temperatury powierzchni morza. Wpływ cyrkulacji atmosferycznej na zmiany TPM nie jest bezpośredni, lecz realizuje się poprzez wpływ na dryf lodów na Morzu Czukockim w okresie wiosen-nym i letnim.
This work characterizes changes in sea surface temperature of the Chukchi Sea observed in the period 1982- 2008 and the way atmospheric circulation (mid-troposphere circulation, modified Arctic Dipole) influences these changes. The research made use of homogeneous data series of sea surface temperature (SST) originating from the data set NOAA NCDC ERSST v.2, in a 2�‹. x 2�‹�É grid (Fig. 1). In the examined period (1982-2008) the increase in sea surface temperature of the Chukchi Sea was observed (Table 1). In the central and southern part of the sea the increase in SST is much stronger (+0.067 deg/year) than in the northern part (0.002 deg/year). This phenomenon is connected with the fact that the northern part of the examined sea area was freed from ice only after the year 2002. During the observed period there was also mean annual increase in SST ranging from 0.62�‹C in the south-west part to 0.03�‹C in the northern part of the examined region (Fig. 2). In the period 1982-2008 strong, statistically significant correlations between SST and the character of the atmospheric circulation observed before were noted. The correlations of SST in the Chukchi Sea are stronger than those with the modified Artic Dipole. The changeability of value of the modified Arctic Dipole from March to September explains 36% (in the eastern part of the sea area) and up to 46% (in the western part) of annual changeability in SST. However the influence of changes in atmospheric circulation on the changeability of SST is not direct. The character of atmospheric circulation noted in spring season (III-V) and even during the entire spring and summer seasons (III-VIII) has influence on the ice drifting in the Chukchi Sea. The drifting ice has influence on the time during which the sea surface accumulates the heat and as a consequence affects the sea surface temperature. This sequence of consecutive correlations seems to be most important for the changes in the SST. The secondary role affecting the changes in SST in the Chukchi Sea plays the increased transport of warm water from the Bering Sea forced by strong positive phases of modified Arctic Dipole in September. This influence is limited to the area up to the southern part of the Chukchi Sea and to the time till the last three months (October-December).
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 147-158
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany temperatury powierzchni Morza Barentsa w latach 1951-2006
Changes in the sea surface temperature of the Barents Sea in the years 1951-2006
Autorzy:
Zblewski, S.
Powiązania:
https://bibliotekanauki.pl/articles/260773.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
temperatura powierzchni morza
NAO
Morze Barentsa
Prąd Zachodniospitsbergeński
Prąd Nordkapski
sea surface temperature
Barents Sea
West Spitsbergen Current
North Cape Current
Opis:
Praca charakteryzuje zmiany temperatury powierzchni Morza Barentsa (TPM) zachodzące w okresie 1951–2006. Stwierdzono występowanie słabych, dodatnich i istotnych statystycznie trendów TPM w gridach leżących poza obszarem bezpośredniego oddziaływania ciepłych prądów morskich. Odnotowano słaby i nierównomiernie rozłożony w przestrzeni wzrost temperatury powierzchni morza – silniejszy we wschodniej części Morza Barentsa. W badanym okresie (1951–2006) na obserwowaną zmienność rocznej TPM znacznie silniejszy wpływ wywierają procesy oceaniczne niż zmienność zimowej cyrkulacji atmosferycznej.
The aim of this work was to analyse monthly and annual values of sea surface temperatures of the Barents Sea in the years covering the period from 1951 up to 2006 averaged to chosen grids 2x2° (Fig. 1).The analysis showed that in the course of SST a clearly marked period (1976–1988) of significant decrease in annual values of water temperature was noted, with the minimum observed in 1980 (Fig. 2). This phenomenon is connected with Great Salinity Anomaly.The research showed that the general decrease in annual SST takes place towards north-east and at the same time, following the same direction, the increase in amplitude of inter-annual changes can be observed (Fig. 3). ‘The warm sources of the North Cape Current and West Spitsbergen Current moving away and the transfer of heat from the ocean to the atmosphere are the cause of this situation. This significant drop in annual sea surface temperature in the NE part of the Barents Sea is also influenced by flows of cold and fresh Surface Arctic Waters from the Arctic and Kara seas. There were also great differences observed in the course of annual SST in the western and eastern parts of the examined sea area. (Fig.4). In the eastern part rapid falls in water temperature can be noted by even 0.7°C from year to year. They result from the sea ice spreading and Surface Arctic Waters from the Kara Sea and from the north region of the Barents Sea which cut off the flow of heat from the deeper parts of the sea towards the surface and to the atmosphere.In the examined period weak positive trends in the annual sea surface temperature were observed and they are statistically significant in almost all grids (Tab.1). The strongest trends were noted in the east part of the examined sea area. Positive and statistically significant trends of the monthly SST are observed in summer and autumn in grids located farthest NE.The analysis showed that the influence of winter atmospheric circulation on the temperature of the sea surface is weak or rather moderate (Tab. 2) and that the observed changeability in annual sea surface temperature of the Barents Sea is mainly controlled by oceanic processes.
Źródło:
Problemy Klimatologii Polarnej; 2007, 17; 61-70
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany stanu termicznego Atlantyku Północnego a przebieg wybranych elementów klimatycznych charakteryzujących klimat Polski
Changes in the thermal state of the North Atlantic and a course of selected climatic elements characterizing the climate of Poland
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2175602.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwa Geofizyczne
Tematy:
Północny Atlantyk
temperatura powierzchni oceanu
SST
Polska
elementy klimatyczne
korelacje
North Atlantic
Sea Surface Temperature
Polska
climatic elements
correlation
Opis:
W pracy rozpatruje się związki między szeregami 7 elementów klimatycznych, obliczonych jako średnie obszarowe dla Polski, a rocznymi szeregami SST na Atlantyku Północnym, obliczonymi dla gridów między 30 a 70°N, w rozdzielczości przestrzennej 10°φ × 10°λ. Okres analizy obejmuje lata 1951-2018. Dane SST pochodzą ze zbioru NOAA NCDC ERSST v.3b, a dane do utworzenia rocznych obszarowych wartości elementów klimatycznych nad Polską stanowią przetworzone dane IMGW BIP (temperatura i wilgotność powietrza, zachmurzenie ogólne, sumy opadów i usłonecznienie) oraz dane pochodzące z reanalizy (SLP i prędkość wiatru). Wyniki analizy ujawniły, że między wszystkimi roz- patrywanymi elementami klimatycznymi a SST na N Atlantyku zachodzą istotne lub (w zdecydowanej przewadze) wysoce istotne korelacje. Rozkład przestrzenny korelacji SST z poszczególnymi elementami przedstawia wyraźne zróżnicowanie geograficzne (rys. 1-7). SST na N Atlantyku w rejonie 30-40°N i 60-40°W wykazuje silne i wysoce istotne korelacje z temperaturą powietrza, sumą usłonecznienia i wilgotnością względną nad Polską. Słabsze, ale przeważnie wysoce istotne korelacje SST z rocznym zachmurzeniem, sumami opadu, SLP i prędkością wiatru obserwuje się w rejonie 50-60°N, 60-20°W. Analiza w większej rozdzielczości przestrzennej przeprowadzona na dwóch obszarach (sekcja S i sekcja N, ryc. 8) wskazała, czego należało się spodziewać, że wartości współczynników korelacji między zmianami SST są wyższe od określonych w analizie o małej rozdzielczości przestrzennej. Oprócz korelacji między SST w poszczególnych punktach i elementami klimatycznymi nad Polską, zachodzą również korelacje między południkowymi gradientami SST między 40 a 60°N. Największą siłę korelacji osiągają te na długościach B (40°W) i C (30°W) - tab. 8. Zmienność SST wykazuje silne związki ze składową długookresową zmian elementów klimatycznych, słabsze ze zmiennością międzyroczną. Analiza relacji logicznych wskazuje, że zmiany SST stanowią przyczynę zmian elementów klimatycznych nad Polską. Zmiany rocznych wartości SST na poszczególnych akwenach objaśniają około 46% wariancji rocznej temperatury powietrza i usłonecznienia w Polsce, 27-30% wariancji wilgotności względnej i prędkości wiatru oraz 12-23% wariancji rocznej zachmurzenia ogólnego, sum opadów oraz SLP. Ponieważ zmienność każdego elementu klimatycznego jest funkcją zmian SST na Atlantyku Północnym, wynika z tego, że zmiany i zmienność klimatu Polski są w znacznej części sterowane przez zmiany stanu termicznego Atlantyku Północnego.
The study considers the relationships between the series of 7 climatic elements, averaged for the area of Poland, and the annual series of SST in the North Atlantic, calculated for grids between 30 and 70°N, at a spatial resolution of 10°φ × 10°λ. The period of analysis covers the years 1951-2018. The SST data comes from the NOAA NCDC ERSST v.3b data base. The data used for the creation of area-averaged annual values of climatic elements over Poland are obtained from IMWM NRI (Institute of Meteorology and Water Management – National Research Institute) – air temperature and humidity, cloud cover, precipitation sums and sunshine duration, and from reanalyzed data – SLP and wind speed. The results of the analysis showed that there are significant or (prevalent) highly significant correlations between all the considered climatic elements and the SST in the North Atlantic. The spatial distribution of the SST correlation with individual elements shows a clear geo graphic differentiation (Fig. 1-7). SST in the North Atlantic in the region of 30°N – 40°N and 60°N - 40°W produces strong and highly significant correlations with air temperature, sum of sunshine duration and relative humidity over Poland). Weaker, but predominantly highly significant correla tions of SST with annual cloudiness, sum of precipitation, SLP and wind speed are observed in the region of 50°N – 60°N, 60°W – 20°W. The analysis based on higher spatial resolution carried out in two areas (section S and section N, Fig. 8) indicated, what could be expected, that the values of the correlation coefficients between changes in SST are higher than those performed for lower spatial resolution. Next to the correlation between the SST defined for individual grids and the climatic ele ments over Poland, the correlations between the longitudinal SST gradients between 40°N and 60°N are also observed. The greatest values of these correlations are noticed for the B (40°W) and C (30°W) profiles – Table 8. SST variability shows strong relation with the long-term component of changes in climatic elements, weaker with inter-annual variability. The analysis of logical relations shows that SST is the cause of changes in climatic elements over Poland. Changes in the annual SST values in individual water bodies explain about 46% of the annual air temperature and sum of sunshine dura tion variance in Poland, 27-30% of the relative humidity and wind speed variance, and 12-23% of the annual variance of cloud cover, sum of precipitation and SLP. Since the variability of each climatic element is a function of SST changes in the North Atlantic, the changes and variability in Poland’s climate are largely driven by changes in the thermal state of the North Atlantic.
Źródło:
Przegląd Geofizyczny; 2021, 3-4; 161--186
0033-2135
Pojawia się w:
Przegląd Geofizyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zmiany pokrywy lodów morskich Arktyki na przełomie XX i XXI wieku i ich związek z cyrkulacją atmosferyczną
Changes in the sea ice cover in the Arctic at the turn of the 20th and 21st centuries and their correlation with the atmospheric circulation
Autorzy:
Marsz, A. A.
Powiązania:
https://bibliotekanauki.pl/articles/260733.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Arktyka
cyrkulacja atmosferyczna
dipol arktyczny
lody morskie
dryf lodów
temperatura powietrza
Arctic
atmospheric circulation
Arctic Dipole
sea ice
drifting ice
air temperature
Opis:
W pracy dokonano analizy wpływu cyrkulacji atmosferycznej na obserwowane w ostatnich latach XX i pierwszych latach XXI wieku zmiany powierzchni lodów morskich w Arktyce oraz zmian temperatury powietrza w sektorze wschodniosyberyjskim i pacyficznym Arktyki. Wprowadzono nowy wskaźnik charakteryzu-jący cyrkulację atmosferyczną w basenie Morza Arktycznego – zmodyfikowany dipol arktyczny (zDA), będący miesięczną różnicą ciśnienia między rejonem Morza Beauforta a rejonem Tajmyru. Występowanie dodatnich faz zDA porządkuje i przyspiesza dryf lodów z mórz Wschodniosyberyjskiego, Czukockiego i zachodniej części Morza Beauforta oraz centralnych części Morza Arktycznego w kierunku Cieśniny Frama. Po roku 1999 gwałtownie wzrosła częstość występowania ekstremalnie dodatnich faz zDA, wydłużył się również czas ich występowania. W latach 1979-2007 zmiany charakteru cyrkulacji atmosferycznej opisanej przez zDA objaśniają ~42% zmienności rocz-nej powierzchni lodów w Arktyce i 46% zmienności powierzchni zlodzonej we wrześniu, czyli miesiącu, w którym zaznacza się minimum rozwoju lodów morskich. We wschodnich sektorach Arktyki działanie zDA pociąga za sobą wzrost częstości i intensywności adwekcji z południa, co powoduje również wzrost temperatury powietrza. Oszacowano, że gwałtowny wzrost wartości zDA, jaki nastąpił w roku 2007 wymusił, wraz ze zmniejszeniem się powierzchni lodów morskich, wzrost temperatury powietrza na stacjach wybrzeża Morza Czukockiego o ~1.3°C, na Morzu Beauforta o ~1.5°C. Taki stan wskazuje, że obecnie obserwowany gwałtowny spadek powierzchni lodów morskich w Arktyce nie stanowi rezultatu działania efektu cieplarnianego, lecz wzrost temperatury powietrza i spadek powierzchni lodów stanowi rezultat zachodzących zmian w cyrkulacji atmosferycznej nad Arktyką.
The observed, at the turn of the 20th and 21st centuries, rapid decrease both in sea ice extent and its area in the Arctic raise a question regarding the real spectrum of reasons influencing this process. A number of works indicate that the increase in the air temperature in the Arctic resulting from the greenhouse effect, is not responsible for the decrease in sea ice cover but the reduction of the ice cover is one of the main causes of the increase in temperature. The aim of this article is to analyse the influence of atmospheric circulation on the process of reduction of the sea ice cover area in the Arctic in the same period. The break of the so far observed correlations between the AO and air temperature (see Overland and Wang 2005, Graversen 2006, Maslanik et al. 2007) indicates that the reason for the decrease in sea ice area should be searched in the activity of other circulation patterns than AO. Starting with the Wu, Wang and Walsh notion of the Arctic Dipole and carrying out simulation of the directions and rate of the drifting ice, a conclusion can be drawn that a simple index being a modification of the ‘Arctic Dipole’ formulated by Wu et al. 2006 (notation zDA) can be used to describe the maximum effectiveness of the transport of ice from the Arctic and the ‘cleaning’ of the Pacific Arctic from ice (the East Siberian, Chukcha and Beaufort seas). This index can be calculated as a standardised difference between SLP between the Beaufort Sea centre and the Tajmyr centre (see Fig. 4). The presence of strong positive phases of zDA (see Fig. 5) is followed by a rapid increase in the export of ice from the Arctic and results in the decrease in the amount of many-year ice in the structure of the Arctic sea ice cover. The ice is then moved away from the coast of east Siberia and Alaska and equally fast moves along the great circle, along the Transarctic Current reaching the Fram Strait at the end. The presence of strong negative phase of zDA (see Fig. 5B) and the neutral phase (see Fig. 5C) creates favourable conditions for the increase in many-year ice in the sea ice cover and restricts the export of ice from the Arctic. In the period between 1949-2007 a gradual increase in time with the extreme positive phases of zDA (zDA . 1 .n) is observed, and the especially strong increase in the frequency of occurrence of extremely positive phases of zDA is noted in the years of the 21st century (see Fig. 6 and 7). The coefficient of correlation between sea ice extent in the Arctic in August and the number of months in a year with anomalously positive phases of zDA is equal –0.62 (p < 0.001, n = 27; 1979-2007). The same correlation with the annual ice area in the Arctic equals (–0.50, p < 0.008). The analysis of correlation of monthly differences in pressure (non-standardized) between the centre of the Beaufort Sea and the centre of the Tajmyr (notation DP) and the ice area in the Arctic indicates that statistically significant correlations occur if the periods they are averaged for, are longer (see Table 1). The condition is that the averaged period DP started earlier than the averaged sea ice area. The analysis of regression shows that in order to obtain a good model describing minimal (September) or mean annual sea ice extent in the Arctic the DP values from March, when the sea ice extent is the largest, should be taken into consideration as one of the independent variables. This gives explanation of the situation that for longer reduction of sea ice area during the summer season, atmospheric circulation favourable for ice export must appear with great advance (equations [1] and [2]). Changes in DP in the years 1979-2007 explain 42% of variances of mean annual sea ice area and 46% of minimal variances (September) in ice area in the Arctic. As the changes in sea ice area are controlled by the auto-regression process, the occurrence of the increased frequency of extremely positive zDA phases in the following years starting from 1988 (see Fig. 7), especially intensive in the years 2003, 2005 and 2007 resulted in the extreme record of minima of sea ice area, not noted before. The atmospheric circulation described with zDA index forces the flow of air from the south to the Beaufort, Chukcha, East Siberian and Laptev seas (see Fig. 5A and Fig. 14). This direction of advection should lead to the increase in surface air temperature (SAT) over the coasts of the above mentioned sea areas. Strong increases in annual SAT can be observed at the stations located on the coasts of the above mentioned seas. The monthly distribution of SAT values indicates especially strong increases in the months from the end of summer and autumn (see Fig. 10-12). The analysis of correlations between DP and monthly SAT at the stations located in that part of the Arctic (see Table 2) indicates the presence of generally weak correlations between the monthly values of DP and SAT. During winter season at the stations located in the western part of the analysed region (Laptev Sea: Kotielyj Island, Mys Shalaurov) the correlations are negative which means that with the increase in differences of pressure between the region of the Beauforf Sea and the region of the Tajmyr (increase zDA) SAT decreases there (in January these correlations are statistically significant). This state can be explained as resulting from advection of air cooled to a great extent over the Siberia. Positive correlations between SAT and DP can be observed at the remaining stations in December, January and February, i.e. in the period when the short wave radiation is scarce, almost null or null and the solid/fast ice reaches the coast line. There is no other explanation of this phenomenon then as the effect of advectional increase in temperature. Similar positive correlations between DP (and in this way also zDA) and the air temperature are observed over the entire analysed region in the summer months and at the beginning of autumn (July-September). At a number of stations in particular months these correlations are statistically not significant, reaching their maximum value at Vrangel Island (in August; r = +0.6; see Fig. 13). As the analysis indicates the summer and early autumn correlations are the direct effect of advection as well as indirect effect of zDA resulting in the area in the coastal waters free from ice. The increase in zDA is accompanied by the visible increase in SST in the summer and early autumn months, which consequently results in the increase in SAT in October. If the correlations between monthly temperature and DP are statistically significant then it is possible to carry out the analysis of regression. This analysis indicates that in the year 2007 in which zDA reached in the period from April to September extremely high values (see Fig.14), the increase in SAT which is influenced by atmospheric circulation, can be estimated as +0.9°C at Vrangel Island and +1.5°C in relation to mean many-year value at Barrow station. Thus, the influence of the atmospheric circulation defined by the zDA index in the Pacific sector of the Arctic indicates synergy – results both in the decrease in the sea ice area as well as in the increase in air temperature. Large restriction of sea ice area over summer season in these sea areas intensifies, in turn, the increase in SAT. The carried out analysis indicates that the observed changes in the area and age structure of the sea ice in the Arctic at the turn of the 20th and 21st centuries and during the first years of the 21st century are mainly connected with the activity of natural processes. The role of the greenhouse effect controlling the changes in sea ice cover of the Arctic, as the analysis shows, has been overestimated.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 7-33
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu (Spitsbergen) w sezonie zimowym 2009-2010 (SW Spitsbergen)
Ice conditions in Hornsund (Spitsbergen) during winter season 2009-2010 (SW Spitsbergen
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/260995.pdf
Data publikacji:
2011
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2009/2010 zaczął się pod koniec października. Pierwsze postacie autochtonicznego lodu morskiego zaobserwowano w strefie brzegowej Isbjornhamny dopiero 26 października. Spadki dobowej temperatury powietrza poniżej zera sporadycznie notowano od połowy września, jednak dopiero w końcu października obniżyła się ona do poziomu temperatury zamarzania wody morskiej. Wyraźnie wyższe od średnich wieloletnich wartości temperatury powietrza okresu październik - luty nie sprzyjały tworzeniu się lodu. Wyjątkowo łagodne warunki lodowe w rejonie południowego Spitsbergenu uniemożliwiały napływ lodu z zewnątrz aż do początków stycznia 2010. Lód morski o większej zwartości pojawił się w Hornsundzie w zasadzie dopiero po wyraźnym spadku temperatury w marcu. Dochodziło wtedy do całkowitego pokrycia fiordu lodem, włącznie z tworzeniem się w zatokach wewnętrznych lodu stałego. Pokrywa lodu stałego utrzymywała się we wschodniej części fiordu, w fazie maksymalnego rozwoju (od połowy marca do połowy kwietnia) pokrywając od połowy do blisko całej jego powierzchni. W skrajnie wschodniej partii fiordu pod Brepollen przetrwała do końca czerwca.
This article presents the sea ice development in the waters of Hornsund Fjord during winter season 2009/2010. Due to long lasting (November-February) high air temperatures (Fig. 1-2) during autumn 2009 mainly brash glacier ice, growlers and bergy bits were present in Hornsund, especially along the coast. Since end of October forms of new ice were observed in coastal zone of Isbjornhamna. In beginning of January first allochtonic drifting ice entered western part of the fjord. First in situ formed pancake ice was observed in coastal zone in February (Fig. 4). During this month young coastal ice was formed in inner bays of the fjord. Significant decrease in air temperature observed in March was connected with ice development (Fig. 5) on whole fjord area. In eastern part the 'autochtonic' fast ice was formed, in western consolidation of drifting ice occurred. The whole area of Hornsund was covered with fast ice for about two weeks. In eastern part of the fjord (Brepollen, Burgerbukta, Samarinvagen) fast ice existed even in June, with maximum thickness 70-80 cm. Last forms of fast ice was destroyed in first days of July in NE part of Brepollen. In April and May close pack ice drifting outside the Hornsund entered few times the central parts of the fjord, but because of mild temperature conditions consolidation did not start. Usually concentration of ice in central part of the fjord was smaller than outside and do not exceed 4-6/10 (open drift), because of prevailing easterly winds, blowing the ice outside. Such a situation existed since end of March for next six weeks. The last short episode the strips of allochtonic ice entered central part of the fjord took place in beginning of May (Fig. 7).
Źródło:
Problemy Klimatologii Polarnej; 2011, 21; 229-239
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu (Spitsbergen) w sezonie zimowym 2008/2009
Ice conditions in Hornsund (Spitsbergen) during winter season 2008-2009
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/261047.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2008/2009 zaczął się w trzeciej dekadzie października, przy czym spadki temperatury powietrza poniżej zera notowano od końca września. Na wodach fiordu w okresie lipiec – wrzesień odnotowywano jedynie postacie lodu lodowcowego. Dopiero spadki temperatury w listopadzie umożliwiły two-rzenie się lodu autochtonicznego w strefie brzegowej. W tym samym czasie do fiordu zaczął okresowo napływać także lód dryfujący z Prądem Sorkapskim. Pokrycie fiordu lodem o dużej zwartości wystąpiło w kilku epizodach, przerywanych kilkudniowymi aktami przynajmniej częściowego odpływania lodu z Hornsundu. Zwarty i bardzo zwarty lód występowała na praktycznie całej powierzchni fiordu w drugiej dekadzie grudnia, pierwszej i drugiej stycznia, lutym, marcu, pierwszej połowie kwietnia i przez kilka dni w maju. Stała pokrywa lodowa utworzyła się poza Isbjornhamną jedynie w skrajnie wschodniej części fiordu, gdzie pod Brepollen przetrwała do pierwszych dni lipca.
This paper presents the sea ice development in the waters of Hornsund Fjord during winter season 2008/2009. In autumn 2008 only brash glacier ice, growlers and bergy bits were present in Hornsund, especially along the coast. Sea ice season started at end of October. Since this time forms of new ice were formed in coastal zone of Isbjornhamna. Because of mild thermal conditions in November and December (Fig. 2, 3) the maximum theoretical ice thickness in inner parts of the fjord could reach 43 cm at the end of the year 2008 (Table 1). In January young coastal ice was formed in Isbjornhamna. Consolidation of close pack ice coming from outside the Hornsund was interrupted few times by increase in air temperature and strong easterly winds, blowing the ice outside again. In the inner bays consolidation of pack ice started probably at end of February. Eastern part of the Hornsund was covered by fast ice since mid of March to the end of June 2009 (Brepollen, Samarinvagen). For over 16 weeks close and very close young pack ice drifted in the Hornsund waters. At the end of April ice concentration in fjord and outside decrease significantly and part of fast ice was broken and removed too. Last episode the Hornsund was covered by very close pack ice drifting from outside took place from 15th till 25th May.
Źródło:
Problemy Klimatologii Polarnej; 2010, 20; 187-196
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i wód przyległych (Spitsbergen) w sezonie zimowym 2010-2011
Ice conditions in Hornsund and adjacent waters (Spitsbergen) during winter season 2010-2011
Autorzy:
Kruszewski, G.
Powiązania:
https://bibliotekanauki.pl/articles/260971.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
ice season
sea surface temperature
Opis:
Sezon lodowy 2010/2011 zaczął się w połowie października. Pierwsze postacie autochtonicz-nego lodu morskiego zaobserwowano w strefie brzegowej Isbjornhamny 15.10. po spadku dobowej temperatury powietrza poniżej poziomu temperatury zamarzania wody morskiej. Zbliżone do średnich wieloletnich wartości temperatury powietrza okresu listopad – styczeń sprzyjały tworzeniu się lodu w strefie brzegowej Hornsundu. Lód morski o zwartości do 4/10 pojawił się w Hornsundzie w końcu października i utrzymywał w listopadzie. Prze-bieg warunków lodowych w rejonie południowego Spitsbergenu – zbliżony do normalnego z wielolecia – umoż-liwiał napływ lodu do fiordu z zewnątrz od połowy grudnia. W tym też okresie w wewnętrznych partiach fiordu zaczął się formować lód stały brzegowy, którego pokrywa w sposób ciągły występowała w N części Brepollen do końca drugiej dekady lipca 2011 (około 7 miesięcy). W okresie maksymalnego rozwoju (druga dekada lutego) lód stały lub całkowicie zwarty pokrywał około 2/3 powierzchni fiordu.
This paper presents the ice conditions in the Hornsund Fjord (Svalbard) during expedition season 2010/2011. Sea ice season started in the mid of October, after clear air temperature drop (Fig. 2). Since this time forms of locally formed ice were present, mainly in coastal zone. To the end of November concentration of ice did not exceed 4/10 (very open drift ice). Close to mean thermal conditions in Hornsund area during winter months (Fig.1, Tab. 1) were favourable for ice development in this region. Theoretical sea ice thickness at the end of the Year 2010 could reach about 50 cm, and close to 1 m at the end of ice season. Close and very close pack ice (7-10/10) drifting outside the fjord were present since December (Fig. 7). Easternmost inner part of the Hornsund was covered by fast (consolidated) ice since mid of December to the mid of July 2011. During its maximum development in February fast ice covered over 70% of Hornsund area. Close and very close pack ice were present at Hornsund waters in January, February, three weeks of March, second half of April and first week of May – all together over three and half months. Periods of time with smaller ice concentration were connected with strong easterly air circulation. In May and June ice concentration in SW Svalbard area decrease significantly. Last two episodes the very close ice pack flowed into the Hornsund took place in first days and in second half of July 2011 (Fig. 8).
Źródło:
Problemy Klimatologii Polarnej; 2012, 22; 69-82
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2007/2008
Ice conditions in Hornsund and its foreshore (SW Spitsbergen) during winter season 2007/2008
Autorzy:
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260675.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
lód morski
sezon lodowy
temperatura wody morskiej
Hornsund
Spitsbergen
sea ice
sea surface temperature
Opis:
W sezonie zimowym 2007/2008 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Od października do lutego średnia miesięczna temperatura powietrza była o 2,6–6,1 deg wyższa, a w marcu o 2,5 deg niższa od średniej klimatycznej (1978-2006). Ujemna temperatura wody powierzchniowej przy brzegu Isbjorn-hamny występowała od 29 X 2007 do 20 V 2008 r. Najniższe (–1,9°C) wartości temperatury wody mierzono od trzeciej dekady listopada 2007 r. do końca kwietnia 2008 r. Latem i jesienią (VIII-X) 2007 r. dochodziło do inten-sywnego obłamywania się lodu lodowcowego, który okresowo tworzył zwarte skupienia growlerów i gruzu lodow-cowego wzdłuż brzegu. W Isbjornhamnie pierwszy okres tworzenia się lodu morskiego miał miejsce między 31 października a 12 grudnia 2007 r. (lepa lodowa, krążki lodowe), drugi – od 26 grudnia 2007 r. do 22 maja 2008 r. Na przedpolu Hornsundu dryfujący lód allochtoniczny pojawił się w pierwszych dniach grudnia 2007 r. Od połowy lutego do trzeciej dekady kwietnia prawie cała powierzchnia Hornsundu pokryta była lodem dryfującym o zmiennej zwartości. Na osiowej partii fiordu lód autochtoniczny zanikł po 28 kwietnia 2008 r. Maksymalna wysokość wału lodu nabrzegowego w Isbjornhamnie osiągnęła 2,5 m.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2007-2008. Due to long lasting (November-February) high air temperatures (Fig. 2-3) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed in March (mean monthly –13.4°C) and April (mean monthly –9.3°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 41cm in January, 52cm in February, 71cm in March, up to 82–84cm in the period from April to May 2008 (Tab. 1). In summer and autumn (August-October) 2007 only brash glacier ice and small icebergs broken off the glaciers endings on the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. The first forms of new ice (slush and grease ice as well as shuga) were observed close to the west coast of Isbjornhamna from 31th October till 12rd December (Fig. 8). The second period of sea ice formation started on 26th December. Not sooner than in the middle of March when severe frost was noted, a permanent ice cover was formed (young ice). Fast ice was only observed in the internal waters of Hornsund, in the Brepollen, Burgerbukta, Samarinvagen, Adria and Isbjornhamna bays. From the first decade of February till the 3th July the ice cover of Hornsund experienced large fluctuations (Fig. 11-12, 14-17). During that period the entire area of Hornsund was covered with sea ice a few times. The first this phenomenon was noted from 7th till 20th February 2008 when the allochtonic ice drifting in the waters of the Sorkapp Current entered western and central part of the fjord and when the central and inner parts were covered with ice formed in situ (Fig. 11-12). The second this phenomenon was noted from the third decade of March till the end of April when the all surface of Hornsund were covered autochthonous ice. On the western and central part of the fjord this was young ice and nilas. In the internal waters of Hornsund was observed first-year ice (Fig. 14-15). This sea ice cover was several times destroyed by very strong east winds causing that most of ice was moved outside the fjord. At the end of April strong E and SE winds caused ice removal from the axial part of Hornsund. Later, apart from three short episodes (5-8 May, 15-22 May and 1-9 July) when strips of allochtonic ice entered west and central part of the fjord (Fig. 16-17), only single floes of broken-off the fast ice from Brepollen, Burgerbukta and Samarinvagen drifted in the waters of Hornsund. The ice season 2007-2008 ended on 9th July when the last floes of very rotten ice were observed drifting from the inside of the fjord with the tidal stream to its foreshore.
Źródło:
Problemy Klimatologii Polarnej; 2009, 19; 247-267
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zlodzenie Hornsundu i jego przedpola (SW Spitsbergen) w sezonie zimowym 2006/2007
Sea-ice cover in Hornsund and its foreshore (SW Spitsbergen) during winter season 2006/2007
Autorzy:
Styszyńska, A.
Rozwadowska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260707.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
Hornsund
Spitsbergen
lód morski
sezon lodowy
sea ice
winter season
sea water temperature
Opis:
W sezonie zimowym 2006/2007 przebieg zlodzenia Hornsundu był odmienny od przeciętnego. Od listopada do marca średnia miesięczna temperatura powietrza była o 3.6–6.3 deg wyższa od średniej klima-tycznej (1978–2006). Ujemna temperatura wody powierzchniowej przy brzegu Isbjornhamny występowała od 28 IX 2006 do 27 V 2007 r. Najniższe wartości temperatury wody mierzono w drugiej i trzeciej dekadzie października (–1.8°C). Latem i jesienią 2006 r. dochodziło do bardzo intensywnego obłamywania się lodu lodowcowego, który okresowo tworzył zwarte skupienia wzdłuż brzegu. Rozwój lodu morskiego w Isbjornhamnie cechuje się stadial-nością. Pierwszy okres tworzenia się lodu morskiego miał miejsce między 6 października a 3 listopada, drugi – od połowy stycznia. W tym samym czasie dryfujący lód allochtoniczny pojawił się również na przedpolu fiordu. Od trzeciej dekady lutego do drugiej dekady kwietnia prawie cała powierzchnia Hornsundu pokryta była lodem dryfu-jącym o zmiennej zwartości. Na osiowej partii fiordu lód morski zanikł po 25 kwietnia, a w Brepollen – w trzeciej dekadzie czerwca 2007 r. Maksymalna wysokość wału lodu nabrzegowego w Isbjornhamnie osiągnęła 2.5 m.
This article presents the development of sea ice cover in the waters of central and western part of the Hornsund Fjord, as well as in its foreshore during winter season 2006–2007. Due to long lasting (November-March) high air temperatures (Fig. 1) the sea ice cover development of Hornsund was different from the average one. Significant decrease in air temperature was observed only in April (mean monthly –8.7°C). In such thermal conditions the maximum thickness of sea ice which might have been formed in the outer, sheltered from high seas areas of the fjord, estimated with the help of Zubov formula, could reach 47cm in January, 58cm in February, 66cm in March, up to 77–80cm in the period from April to May 2007 (Tab.1). In summer and autumn 2006 only brash glacier ice and small icebergs broken off the glaciers endings on the sea in Hornsund drifted in the waters of the fjord. At this time brash glacier ice and growlers broken off the Hans Glacier periodically concentrated densely along the coast of Isbjorhamna. The first forms of new ice (slush and grease ice as well as shuga) were observed close to the west coast of Isbjornhamna from 6th October till 3rd November. The second period of sea ice formation started on 7th December. However, the ice disappeared quickly because of strong winds. Not sooner than in the middle of January when severe frost was noted, a permanent ice cover was formed (young ice). But also this ice was broken and diverged in most part of the fjord. Fast ice was only observed in the internal waters of Hornsund, in the Brepollen, Burgerbukta and Samarinvagen bays. From the third decade of February till the end of April the ice cover of Hornsund experienced large fluctuations. During that period the entire area of Hornsund was covered with sea ice a few times. This phenomenon was noted when the allochtonic ice drifting in the waters of the Sorkapp Current entered western and central part of the fjord and when the central and inner parts were covered with ice formed in situ. This sea ice cover was several times destroyed by very strong east winds causing that most of ice was moved outside the fjord. At the beginning of May very strong E and SE winds caused ice removal from the axial part of Hornsund. Later, apart from two short episodes (19-29 May and 22-23 June) when open strips of allochtonic ice entered west and central part of the fjord, only single floes of broken-off the fast ice from Brepollen, Burgerbukta and Samarinvagen drifted in the waters of Hornsund. The ice season 2006/2007 ended on 19th July when the last floes of very rotten ice were observed drifting from the inside of the fjord with the tidal stream to its foreshore.
Źródło:
Problemy Klimatologii Polarnej; 2008, 18; 141-160
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zima 2019-2020 roku : historyczne minimum zlodzenia Bałtyku
Winter 2019-2020 : the historical minimum of the ice cover of the Baltic Seas
Autorzy:
Marsz, Andrzej A.
Styszyńska, Anna
Powiązania:
https://bibliotekanauki.pl/articles/2175601.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwa Geofizyczne
Tematy:
Morze Bałtyckie
maksimum pokrywy lodowej
cyrkulacja atmosferyczna
klimat
temperatura powierzchni morza
Baltic Sea
maximum ice cover
atmospheric circulation
climate
sea surface temperature
Opis:
W sezonie zimowym 2019-2020 wystąpiło historyczne minimum rocznej maksymalnej powierzchni zlodzonej Bałtyku (MIE) w całym 301.letnim okresie obserwacji (1720-2020). MIE osiągnęła w tym sezonie lodowym wartość zaledwie 37 tys. km2, przy średniej (1720-2019) równej 213 tys. km2 i (odchyleniu standardowym) równym 112,9 tys. km2. W pracy rozpatruje się zespół procesów, które doprowadziły do osiągnięcia przez MIE ekstremalnie niskiej wartości. Analizę przeprowadzono dla okresu ostatnich 70 lat (1951-2020). Główną przyczyną wystąpienia w sezonie zimowym 2019-2020 tak niskiej MIE jest zmiana reżimu cyrkulacji środkowotroposferycznej w latach 1987-1989, polegająca na przejściu epoki cyrkulacyjnej E w epokę cyrkulacyjną W. W ostatniej epoce cyrkulacyjnej frekwencja makro-typu W według klasyfikacji Wangengejma-Girsa wzrosła znacznie powyżej wartości średnich (ryc. 3). Ponieważ zmienność frekwencji makrotypów cyrkulacji środkowotroposferycznej steruje zmiennością wartości elementów klimatycznych, w tym temperaturą powietrza, usłonecznieniem, prędkością wiatru (tab. 1), zmiana frekwencji makrotypów doprowadziła do zmiany bilansu cieplnego Bałtyku. Po roku 1988 wzrosła akumulacja ciepła słonecznego w wodach Bałtyku w okresie letnim i zmniejszyły się strumienie ciepła jawnego i ciepła parowania z powierzchni Bałtyku w okresach zimowych. W efekcie tych zmian temperatura powierzchni morza (SST) systematycznie wzrastała i SST na coraz większych powierzchniach morza nie osiągała w okresach zimowych temperatury krzepnięcia. W przebiegu SST pojawił się trend dodatni i tym samym wystąpił ujemny trend w przebiegu MIE. Spowodowało to zmianę reżimu lodowego Bałtyku, w ostatniej epoce cyrkulacyjnej silnie zmniejszyła się średnia wartość MIE i znacznie wzrosła częstość występowania łagodnych sezonów lodowych, w tym sezonów ekstremalnie łagodnych (MIE < 81.0 tys. km2). Wystąpienie w okresie ostatniej zimy (DJFM; 2019-2020) bardzo silnej cyrkulacji strefowej (ryc. 6), będącej skutkiem dominacji frekwencji makrotypu W (tab. 3) doprowadziło do wystąpienia bardzo silnych anomalii temperatury powietrza i anomalii SST (ryc. 7), uniemożliwiających, poza skrajnymi północnymi akwenami Bałtyku (Zatoka Botnicka), rozwój zlodzenia. Wystąpienie historycznego minimum MIE w sezonie lodowym 2019-2020 stanowi wynik ewolucji pola SST Bałtyku, zacho-zącej pod wpływem zmiany charakteru cyrkulacji atmosferycznej po roku 1988.
In the winter season 2019-2020, there was a historical minimum of the annual maximum ice extent (MIE) of the Baltic Sea within the entire 301-year observation period (1720-2020). In this ice season MIE reached a value of only 37,000 km2, with an average (1720-2019) of 213,000 km2 and (standard deviation) of 112,900 km2. The paper considers the set of pro-cesses that led to the MIE reaching an extremely low value. The analysis was carried out for the last 70 years (1951-2020). The main reason for the occurrence of such a low MIE in the winter season 2019-2020 is the change in the mid-tropospheric circulation regime in the years 1987-1989, consisting in the transition of the E circulation epoch into the W circulation epoch. In the last period of circula-tion epoch the frequency of the W macrotype according to the Wangengejm-Girs classifica-tion increased significantly above the mean values (Fig. 3). As the variability of the frequency of the macrotypes of the mid-tropospheric circulation controls the variability of the values of climatic elements, including air temperature, sunshine duration, wind speed (Table 1), the change in the frequency of macrotypes led to a change in the thermal balance of the Baltic Sea. After 1988 the accumulation of solar heat in the waters of the Baltic Sea in the Summer period increased, and the fluxes of sensible heat and the heat of evaporation from the surface of the Baltic Sea in Winter periods decreased. As a result of these changes the sea surface temperature (SST) was systematically increasing, and the SST on increasingly larger sea sur-faces did not reach the freezing point in Winter. There was a positive trend in the course of SST and thus a negative trend in the course of MIE. This caused a change in the ice regime of the Baltic Sea. In the last circulation epoch the mean value of MIE decreased significantly and the frequency of mild ice seasons increased significantly, including extremely mild seasons (MIE <81,000 km2). The occurrence of a very strong zonal circulation during the last winter (DJFM; 2019-2020) (Fig. 6), resulting from the dominance of the W macrotype frequency (Table 3), led to a very strong air temperature anomalies and to the SST anomalies (Fig. 7), preventing, apart from the extremely northern waters of the Baltic Sea (Gulf of Bothnia), the development of the ice cover. The occurrence of the historical MIE minimum in the 2019-2020 ice season is the result of the evolution of the Baltic SST field, which took place as a result of the change in the nature of the atmospheric circulation after 1988.
Źródło:
Przegląd Geofizyczny; 2021, 3-4; 227--249
0033-2135
Pojawia się w:
Przegląd Geofizyczny
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies