Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "scattered radiation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Effect of scattered radiation in the total body irradiation technique: evaluation of the spoiler and wall dose component in the depthdose distribution
Autorzy:
Piotrowski, T.
Adamska, K.
Malicki, J.
Powiązania:
https://bibliotekanauki.pl/articles/147640.pdf
Data publikacji:
2007
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
total body irradiation (TBI)
scattered radiation
leukaemia
Opis:
To determine the additional dose in layers of the body close to the skin during total body irradiation (TBI), due to radiation scattered off the treatment room walls and behind plexiglass spoilers applied to improve dose uniformity within the irradiated body. Large-field 6, 15 and 25 MV photon beams were generated by a Saturn 43 medical accelerator. A solid 30 ´ 30 ´ 30 cm3 PMMA (polymethylmethacrylate) phantom was used to represent radiation scattered from the body of the patient. Dose distributions were measured by a Farmer ionization chamber. The dose component arising from the spoiler was measured 5 mm below the phantom surface, over distances of 5-100 cm between the spoiler and the phantom surface. To measure the contribution of backscattered radiation from the walls, a small lead block was placed between the source and detector. Measurements were carried out in air with the PMMA phantom removed, to eliminate radiation backscattered from the phantom. As measured behind the spoiler, attenuation of the primary photon beam by the spoiler itself was by 8, 5 and 3% for 6, 15 and 25 MV beams, respectively. The highest dose contribution from the spoiler arose at 10 cm separation between the phantom surface and the spoiler. Assessed at a depth of 5 mm in the phantom, at spoiler-phantom separation of 10 cm, relative to case without spoiler and with wall backscatter subtracted, the dose enhancement due to the spoiler was by 8, 13 and 20% at beam energies 6, 15 and 25 MV, respectively. In these measurements, the distance between the source and the phantom surface was 300 cm and that between the source and the spoiler - 290 cm. The dose contributions due to radiation backscattered from the walls, relative to the case without any wall backscatter, estimated over the distal side of the phantom at a distance of 20 cm between the wall and that side of the phantom, were 5, 6 and 8% at beam energies 6, 15 and 25 MV, respectively. The use of a spoiler enhanced the dose in regions close to the phantom surface, compensating for the dose decrease over that area due to build-up effect. Radiation backscattered from the wall enhanced the dose in regions close to the phantom surface facing the wall.
Źródło:
Nukleonika; 2007, 52, 4; 153-158
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams
Autorzy:
Jabbari, N.
Hashemi-Malayeri, B.
Farajollahi, A. R.
Kazemnejad, A.
Powiązania:
https://bibliotekanauki.pl/articles/147627.pdf
Data publikacji:
2007
Wydawca:
Instytut Chemii i Techniki Jądrowej
Tematy:
Monte Carlo
radiation therapy
medical linear accelerator
electron applicator
scattered radiation
treatment planning
Opis:
. In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth.
Źródło:
Nukleonika; 2007, 52, 3; 97-103
0029-5922
1508-5791
Pojawia się w:
Nukleonika
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Simulation of Reflected and Scattered Laser Radiation for Designing Laser Shields
Autorzy:
Konieczny, P.
Wolska, A.
Świderski, J.
Zając, A.
Powiązania:
https://bibliotekanauki.pl/articles/89749.pdf
Data publikacji:
2008
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
biological and safety aspects of laser radiation
shield angle
computer simulation
measurements of reflected and scattered laser radiation
Opis:
This paper presents a computer simulation of reflected and scattered laser radiation for calculating the angle of laser shields performed with the Laser Shield Solver computer program. The authors describe a method of calculating the shield angle for laser shields which protect workers against reflected and scattered laser radiation and which are made from different materials. The main assumptions of the program, which calculates and simulates reflected laser radiation from any material and which can be used for designing shield angles, are presented. Calculations are compared with measurements of reflected laser radiation. The results for one type of laser and different materials which interacted with a laser beam showed that the Laser Shield Solver was an appropriate tool for designing laser shields and its simulations of reflected laser radiation distribution have practical use.
Źródło:
International Journal of Occupational Safety and Ergonomics; 2008, 14, 2; 133-147
1080-3548
Pojawia się w:
International Journal of Occupational Safety and Ergonomics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies