Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "samoorganizująca mapa (SOM)" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Adaptive modelling of spatial diversification of soil classification units
Adaptacyjne modelowanie przestrzennego zróżnicowania jednostek klasyfikacyjnych gleb
Autorzy:
Urbański, K.
Gruszczyński, S.
Powiązania:
https://bibliotekanauki.pl/articles/292945.pdf
Data publikacji:
2016
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
adaptive algorithms
self-organizing map (SOM)
soil classification
Upper Silesian Industrial Region
algorytmy adaptacyjne
Górnośląski Okręg Przemysłowy (GOP)
klasyfikacja gleb
samoorganizująca mapa (SOM)
Opis:
The article presents the results of attempts to use adaptive algorithms for classification tasks different soils units. The area of study was the Upper Silesian Industrial Region, which physiographic and soils parameters in the form of digitized was used in the calculation. The study used algorithms, self-organizing map (SOM) of Kohonen, and classifiers: deep neural network, and two types of decision trees: Distributed Random Forest and Gradient Boosting Machine. Especially distributed algorithm Random Forest (algorithm DRF) showed a very high degree of generalization capabilities in modeling complex diversity of soil. The obtained results indicate, that the digitization of topographic and thematic maps give you a fairly good basis for creating useful models of soil classification. However, the results also showed that it cannot be concluded that the best algorithm presented in this research can be regarded as a general principle of system design inference.
Wraz z rozwojem technologii informatycznych następuje stopniowa zmiana podejścia do dokumentacji kartograficznej obiektów przyrodniczych, w tym gleb. Podstawowymi cechami dowolnej klasyfikacji, których przedmiotem są gleby, jest wielowymiarowość jednostek (nie ma pojedynczej właściwości, możliwej do wyznaczenia w drodze pomiaru, która wystarczałaby do jednoznacznego przypisania pedonu do określonej klasy w stosowanych skalach klasyfikacyjnych gleb), w związku z czym właściwe wydaje się wykorzystanie do tego celu dostępnych komputerowych metod przetwarzania danych. Modelowanie przestrzennego zróżnicowania gleb na podstawie przesłanek natury fizjograficznej, odtworzonych na podstawie digitalizacji istniejących materiałów kartograficznych, jest podstawą do tworzenia przestrzennych baz danych przechowywanych w wersji cyfrowej. Inaczej niż w typowej kartografii tematycznej zawierającej treści glebowo-siedliskowe, modele te wskazują na prawdopodobieństwo a priori występowania określonej jednostki glebowej w określonym położeniu, nie zaś bezwzględną przynależność terenu do niej. Taka interpretacja wymaga zbudowania stosownego algorytmu wiążącego czynniki natury geologicznej i fizjograficznej z jednostkami glebowymi. Do tego celu często wykorzystuje się tak zwane algorytmy adaptacyjne, umożliwiające elastyczne tworzenie modeli zależności bazujących na danych. W pracy przedstawiono dwa warianty doboru parametrów przetwarzania danych fizjograficzno-glebowych potencjalnie przydatnych do tych celów. Wykorzystano dane pochodzące z bazy danych fizjograficznoglebowych z rejonu GOP (Górnośląski Okręg Przemysłowy) uzyskanych w wyniku digitalizacji materiałów kartograficznych. Analizie poddano wyłącznie tereny użytków rolnych: gruntów ornych (R) i trwałych użytków zielonych (Ł i Ps). Na obszarze o powierzchni 1 km2 wyodrębniono 6,4 mln jednostek tworzących siatkę kwadratów o rozmiarach 20 × 20 m. Wykorzystane zostały algorytmy samoorganizującej mapy (SOM) Kohonena oraz klasyfikatory – głęboka sieć neuronowa, oraz dwa rodzaje drzew decyzyjnych – rozproszony las losowy (ang. Distributed Random Forest) i wzmacniane drzewa losowe (ang. Gradient Boosting Machine). Szczególnie algorytm rozproszonego lasu losowego (algorytm DRF) wykazał bardzo wysoki stopień zdolności generalizacyjnej w modelowaniu zróżnicowania kompleksów glebowych.
Źródło:
Journal of Water and Land Development; 2016, 30; 127-139
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe ANN : sieci Kohonena
Artificial neural networks (ANN) : Kohonen networks
Autorzy:
Iljaszewicz, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/131981.pdf
Data publikacji:
2018
Wydawca:
Wrocławska Wyższa Szkoła Informatyki Stosowanej Horyzont
Tematy:
Sieci Kohonena
sieci neuronowe
mapa samoorganizująca
SOM
WEBSOM
Kohonen networks
artificial neural networks
ANN
Self Organizing Map
Opis:
Artykuł omawia sztuczne sieci neuronowe (ang. ANN- Artificial neural networks). Jedną z odmian są sieci Kohonena zwane Mapą Samoorganizującą (ang. SOM – Self Organizing Map) realizują one proces uczenia się sieci neuronowych samodzielnie tzn. rozpoznają relacje występujące w skupieniach poprzez wykrycie wewnętrznej struktury i kategoryzują je w procesie samouczenia. SOM służy do uformowania odwzorowania z przestrzeni wielowymiarowej do przestrzeni jednowymiarowej lub dwuwymiarowej. Główną cechą SOM jest to, że tworzy on nieliniową projekcję wielowymiarową kolektora danych na regularnej, niskowymiarowej (zwykle 2D) sieci. Na wyświetlaczu klastrowanie przestrzeni danych, jak również relacje metryczno-topologiczne elementów danych, są wyraźnie widoczne. Jeśli elementy danych są wektorami, składniki, których są zmiennymi z określone znaczenie, takie jak deskryptory danych statystycznych lub pomiary, które opisują proces, siatka SOM może być wykorzystana, jako podstawa, na której może znajdować się każda zmienna wyświetlane osobno przy użyciu kodowania na poziomie szarości lub pseudo koloru. Ten rodzaj projekcji został uznany za bardzo przydatny do zrozumienia wzajemnych zależności między zmiennymi, a także strukturami zbioru danych.
The article discusses artificial neural networks (ANN). One of the varieties is the Kohonen network, called the Self Organizing Map (SOM), that perform the learning process of neural networks independently, i.e. they recognize relationships occurring in clusters by detecting an internal structure and categorizing them in the process of self-learning. SOM is used to form mapping from a multidimensional space to a one-dimensional or two-dimensional space. The main feature of SOM is that it creates a non-linear multi-dimensional projection of a data collector on a regular, low-dimensional (usually 2D) network. On the display, data space clustering as well as metric-topological relations of data elements are clearly visible. If the data elements are vectors, the components of which are variables with defined meanings, such as statistical data descriptors or measurements that describe the process, the SOM grid can be used as a basis on which each variable can be displayed separately using gray or pseudo-color coding. This type of projection has been found to be very useful for understanding the interrelationships between variables as well as data set structures.
Źródło:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka; 2018, 8, 1; 34-39
2082-9892
Pojawia się w:
Biuletyn Naukowy Wrocławskiej Wyższej Szkoły Informatyki Stosowanej. Informatyka
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies