Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rules extraction" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Rough Set Application for the Tax Payer Classification Rules
Zastosowanie teorii zbiorów przybliżonych w zadaniu klasyfikacji podatników
Autorzy:
Misztal, L.
Powiązania:
https://bibliotekanauki.pl/articles/156046.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
zbiory przybliżone
eksploracja danych
klasyfikacja
ekstrakcja reguł
reguły decyzyjne
rough sets
data mining
classification
rules extraction
decision rules
Opis:
Classification of the tasks for real-world problems becomes possible because of creation and use of more efficient IT systems. It also targets rough set methods as well described with solid mathematical basis for classification tasks. In the presented paper the application of rough set theory with the usage of significance of attributes and decision rule sets for classification of taxpayers is described. There are taken into account the negative or positive results of taxation control, and specific features describing payers are considered. Appropriate choice of data, building the model and its application leads to the specified goal reaching, with better accuracy in comparison to "intuitive" choice. Simultaneously it becomes possible to extract decision rules in the linguistic form, what gives opportunity for easier interpretation of obtained results. As a result of the solution application the more accurate selection of tax payers is obtained. This is of significant meaning for the tax authorities, and this leads for the better observance of the tax law.
Rozwiązywanie zadań klasyfikacji dla rzeczywistych problemów stało się możliwe dzięki rozwojowi wydajniejszych systemów informatycznych. Dotyczy to również teorii zbiorów przybliżonych dla zadań klasyfikacji. W przedstawionej publikacji zastosowano zbiory przybliżone, które mają ugruntowaną teorię bazującą na rozszerzeniu teorii zbiorów i definiującą dolne oraz górne przybliżenie, oraz wyznaczającą tabelę decyzyjną do klasyfikacji. Metodę użyto do obliczeń istotności atrybutów oraz reguł decyzyjnych opisujących klasyfikację podatników ze względu na pozytywny lub negatywny wynik kontroli, przy uwzględnieniu specyficznych cech ich opisujących. Odpowiedni dobór danych, budowa modelu oraz jego użycie umożliwiło osiągnięcia zadanego celu ze zwiększoną dokładnością w stosunku do "intuicyjnego" wyboru. Wykorzystanie zbiorów przybliżonych, które wyznaczają wyniki końcowe klasyfikacji w postaci zbioru reguł umożliwiło ich ekstrakcję w łatwo interpretowalnej formie lingwistycznej. W publikacji zastosowano autorskie rozwiązanie programowe bazujące na kolekcjach, tablicach oraz obiektach pośrednich, zaimplementowane dla bazy danych Oracle, dzięki któremu zrealizowano zadanie oraz przedstawiono rezultaty. Dzięki uzyskanym wynikom bazującym na modelu opartym na użytej metodzie możliwe staje się dokładniejsze typowanie podatników funkcjonujących w polskim systemie prawnym i mających problemy podatkowe, których należy poddać kontroli. Tym samym zwiększa się skuteczność egzekwowania prawa podatkowego.
Źródło:
Pomiary Automatyka Kontrola; 2009, R. 55, nr 10, 10; 796-798
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Neuro-fuzzy modelling based on a deterministic annealing approach
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908442.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
prediction
Opis:
This paper introduces a new learning algorithm for artificial neural networks, based on a fuzzy inference system ANBLIR. It is a computationally effective neuro-fuzzy system with parametrized fuzzy sets in the consequent parts of fuzzy if-then rules, which uses a conjunctive as well as a logical interpretation of those rules. In the original approach, the estimation of unknown system parameters was made by means of a combination of both gradient and least-squares methods. The novelty of the learning algorithm consists in the application of a deterministic annealing optimization method. It leads to an improvement in the neuro-fuzzy modelling performance. To show the validity of the introduced method, two examples of application concerning chaotic time series prediction and system identification problems are provided.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 4; 561-576
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Extraction of fuzzy rules using deterministic annealing integrated with ε-insensitive learning
Autorzy:
Czabański, R.
Powiązania:
https://bibliotekanauki.pl/articles/908395.pdf
Data publikacji:
2006
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
sieć neuronowa
sieć neuronowa rozmyta
ekstrakcja reguł
fuzzy systems
neural networks
neuro-fuzzy systems
rules extraction
deterministic annealing
Opis:
A new method of parameter estimation for an artificial neural network inference system based on a logical interpretation of fuzzy if-then rules (ANBLIR) is presented. The novelty of the learning algorithm consists in the application of a deterministic annealing method integrated with ε-insensitive learning. In order to decrease the computational burden of the learning procedure, a deterministic annealing method with a “freezing” phase and ε-insensitive learning by solving a system of linear inequalities are applied. This method yields an improved neuro-fuzzy modeling quality in the sense of an increase in the generalization ability and robustness to outliers. To show the advantages of the proposed algorithm, two examples of its application concerning benchmark problems of identification and prediction are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2006, 16, 3; 357-372
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Novel framework for aspect knowledge base generated automatically from social media using pattern rules
Autorzy:
Tran, Tuan Anh
Duangsuwan, Jarunee
Wettayaprasit, Wiphada
Powiązania:
https://bibliotekanauki.pl/articles/2097963.pdf
Data publikacji:
2021
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
opinion mining
aspect knowledge base
aspect extraction
pattern rules
social media
Opis:
One of the factors that improve businesses in business intelligence is summarization systems that can generate summaries based on sentiment from social media. However, these systems cannot produce such summaries automatically; they use annotated datasets. To support these systems with annotated datasets, we propose a novel framework that uses pattern rules. The framework has two procedures: 1) pre-processing, and 2) aspect knowledge-base generation. The first procedure is to check and correct any misspelled words (bigram and unigram) by a proposed method and tag the parts-of-speech of all of the words. The second procedure is to automatically generate an aspect knowledge base that is to be used to produce sentiment summaries by sentiment-summarization systems. Pattern rules and semantic similarity-based pruning are used to automatically generate an aspect knowledge base from social media. In the experiments, eight domains from benchmark datasets of reviews are used. The performance evaluation of our proposed approach shows the highest performance when compared to other unsupervised approaches.
Źródło:
Computer Science; 2021, 22 (4); 489--516
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Fuzzy System with ε-insensitive Learning of Premises and Consequences of if-then Rules
Autorzy:
Łęski, J. M.
Czogała, T.
Powiązania:
https://bibliotekanauki.pl/articles/908547.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system rozmyty
zdolność uogólnienia
modelowanie rozmyte
fuzzy system
generalization ability
extraction of fuzzy if-then rules
global ε-insensitive learning
local ε-insensitive learning
Opis:
First, a fuzzy system based on if-then rules and with parametric consequences is recalled. Then, it is shown that the global and local ε-insensitive learning of the above fuzzy system may be presented as a combination of both an ε-insensitive gradient method and solving a system of linear inequalities. Examples are given of using the introduced method to design fuzzy models of real-life data. Simulation results show an improvement in the generalization ability of a fuzzy system trained by the new method compared with the traditional and other ε-insensitive learning methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 2; 257-273
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies