Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rule based networks" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Rule based networks : an efficient and interpretable representation of computational models
Autorzy:
Liu, H.
Gegov, A.
Cocea, M.
Powiązania:
https://bibliotekanauki.pl/articles/91698.pdf
Data publikacji:
2017
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rule based networks
knowledge discovery
predictive modelling
rule representation
Opis:
Due to the vast and rapid increase in the size of data, data mining has been an increasingly important tool for the purpose of knowledge discovery to prevent the presence of rich data but poor knowledge. In this context, machine learning can be seen as a powerful approach to achieve intelligent data mining. In practice, machine learning is also an intelligent approach for predictive modelling. Rule learning methods, a special type of machine learning methods, can be used to build a rule based system as a special type of expert systems for both knowledge discovery and predictive modelling. A rule based system may be represented through different structures. The techniques for representing rules are known as rule representation, which is significant for knowledge discovery in relation to the interpretability of the model, as well as for predictive modelling with regard to efficiency in predicting unseen instances. This paper justifies the significance of rule representation and presents several existing representation techniques. Two types of novel networked topologies for rule representation are developed against existing techniques. This paper also includes complexity analysis of the networked topologies in order to show their advantages comparing with the existing techniques in terms of model interpretability and computational efficiency.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2017, 7, 2; 111-123
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Negative feature selection algorithm for anomaly detection in real time
Autorzy:
Hryniów, K.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/92969.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Przyrodniczo-Humanistyczny w Siedlcach
Tematy:
anomaly detection
feature selection
frequent pattern mining
neural networks
rule-based systems
Opis:
Anomaly detection methods are of common use in many fields, including databases and large computer systems. This article presents new algorithm based on negative feature selection, which can be used to find anomalies in real time. Proposed algorithm, called Negative Feature Selection algorithm (NegFS) can be also used as first step for preprocessing data analyzed by neural networks, rule-based systems or other anomaly detection tools, to speed up the process for large and very large datasets of different types.
Źródło:
Studia Informatica : systems and information technology; 2011, 1-2(15); 15-23
1731-2264
Pojawia się w:
Studia Informatica : systems and information technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An expert elicitation analysis for vessel allision risk near the offshore wind farm by using fuzzy rule-based bayesian network
Autorzy:
Yu, Q.
Liu, K.
Powiązania:
https://bibliotekanauki.pl/articles/117215.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Morski w Gdyni. Wydział Nawigacyjny
Tematy:
offshore wind farms
expert elicitation analysis
Bayesian network model
fuzzy rule-based bayesian network
Failure Modes and Effects Analyses (FMEA)
Bayesian Networks
vessel allision risk
risk analysis
Opis:
This paper develops an expert based framework for analysing and synthesising the ship allision risk near the offshore wind farm (OWF) on the basis of a generic Fuzzy Bayesian network and FMEA analysis. This framework is specifically intended to overcome the difficulty of using traditional risk assessment methods in OWF allision. Under the introduced framework, subjective belief degrees are assigned to model the incompleteness encountered in establishing the knowledge base. The fuzzy transformation technology is then used to introduce all judgements results under various situations. Fully, a Bayesian network is established to aggregate all relevant attributes to the conclusion and to prioritise potential allision risk level of each ship categories. A series of case studies of different ship categories are studied to illustrate the application of the proposed framework. Results show that the fishing vessel and the service vessel have a higher allision risk than the merchant vessel due to insufficient risk detection. The collision consequence of the tanker is significantly higher than other types of vessel. The framework facilitates subjective risk assessment when historical failure data is not available in their practice, which provides support to OWF-safeguarding and decision-making.
Źródło:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation; 2019, 13, 4; 831-837
2083-6473
2083-6481
Pojawia się w:
TransNav : International Journal on Marine Navigation and Safety of Sea Transportation
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies