Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rozpoznawanie online" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Signature verification: A comprehensive study of the hidden signature method
Autorzy:
Putz-Leszczyńska, J.
Powiązania:
https://bibliotekanauki.pl/articles/331346.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
signature verification
online recognition
time warping
hidden signature
weryfikacja podpisu
rozpoznawanie online
podpis ukryty
Opis:
Many handwritten signature verification algorithms have been developed in order to distinguish between genuine signatures and forgeries. An important group of these methods is based on dynamic time warping (DTW). Traditional use of DTW for signature verification consists in forming a misalignment score between the verified signature and a set of template signatures. The right selection of template signatures has a big impact on that verification. In this article, we describe our proposition for replacing the template signatures with the hidden signature—an artificial signature which is created by minimizing the mean misalignment between itself and the signatures from the enrollment set. We present a few hidden signature estimation methods together with their comprehensive comparison. The hidden signature opens a number of new possibilities for signature analysis. We apply statistical properties of the hidden signature to normalize the error signal of the verified signature and to use the misalignment on the normalized errors as a verification basis. A result, we achieve satisfying error rates that allow creating an on-line system, ready for operating in a real-world environment.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 3; 659-674
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic handwritten signature identification using spiking neural network
Dynamiczna identyfikacja podpisu odręcznegoprzy użyciu pulsującej sieci neuronowej
Autorzy:
Kutsman, Vladislav
Kolesnytskyj, Oleh
Powiązania:
https://bibliotekanauki.pl/articles/2070220.pdf
Data publikacji:
2021
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
online signature identification
spiking neural network
invariant dynamic parameters
signature recognition
identyfikacja podpisu online
pulsująca sieć neuronowa
niezmienne parametry dynamiczne
rozpoznawanie podpisu
Opis:
The article proposes a method for dynamic signature identification based on a spiking neural network. Three dynamic signatureparameters l(t), xy(t), p(t) are used, which are invariant to the signature slope angle, and after their normalization, also to the signature spatial and temporal scales. These dynamic parameters are fed to the spiking neural network for recognition simultaneously in the form of time series without preliminary transformation into a vector of static features, which, on the one hand, simplifies the method due to the absence of complex computational transformation procedures,and on the other hand, prevents the loss of useful information, and therefore increases the accuracy and reliability of signature identificationand recognition (especially when recognizing forged signatures that are highly correlated with the genuine). The spiking neural network used has a simple training procedure, and not all neurons of the network are trained, but only the output ones. If it is necessary to add new signatures, it is not necessaryto retrain the entire network as a whole, but it is enough to add several output neurons and learn only their connections. Inthe results of experimental studies of the software implementation of the proposed system, it’s EER = 3.9% was found when identifying skilled forgeries and EER = 0.17% when identifying random forgeries.
W artykule zaproponowano metodę dynamicznej identyfikacji podpisów opartą na pulsującej sieci neuronowej. Wykorzystywane są trzy parametry dynamiczne podpisu l(t), xy(t), p(t), które są niezmienne względem kąta nachylenia podpisu, a po ich normalizacji –także do skali przestrzennej i czasowej podpisu. Te dynamiczne parametry są podawane do sieci neuronowej w celu rozpoznania jednocześnie jako szeregi czasowe bez uprzedniej konwersji na wektor cech statycznych, co z jednej strony upraszcza metodę ze względu na brak skomplikowanych procedur konwersji obliczeniowej,a z drugiej ręka zapobiega utracie przydatnych informacji –zwiększa dokładność i wiarygodność identyfikacjii rozpoznawania podpisów (zwłaszczaw rozpoznawaniu podpisów sfałszowanych, które są silnie skorelowane z autentycznymi).Zastosowana sieć neuronowa typu spiking ma prostą procedurę treningu, przy czym nie wszystkie neurony sieci są trenowane, a jedynie te wyjściowe.Jeśli konieczne jest dodanie nowych sygnatur, nie jest konieczne trenowanie całej sieci, ale wystarczy dodać kilka neuronów wyjściowych i uczyć tylko te połączenia.W wyniku eksperymentu programowego zaproponowanego systemu otrzymano EER = 3,9% przy identyfikacji sfałszowanych podpisów i EER = 0,17% przy identyfikacji fałszerstw losowych.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2021, 11, 3; 34--39
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies