Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "round-decomposable" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Arc-Disjoint Hamiltonian Paths in Strong Round Decomposable Local Tournaments
Autorzy:
Meng, Wei
Powiązania:
https://bibliotekanauki.pl/articles/32083838.pdf
Data publikacji:
2021-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
local tournament
round-decomposable
arc-disjoint Hamiltonian paths
Opis:
Thomassen, [Edge-disjoint Hamiltonian paths and cycles in tournaments, J. Combin. Theory Ser. B 28 (1980) 142–163] proved that every strong tournament has a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices if and only if it is not an almost transitive tournament of odd order. As a subclass of local tournaments, Li et al. [Arc-disjoint Hamiltonian cycles in round decomposable local tournaments, Discuss. Math. Graph Theory 38 (2018) 477–490] confirmed the existence of such two paths in 2-strong round decomposable local tournaments. In this paper, we show that every strong, but not 2-strong, round decomposable local tournament contains a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices except for three classes of digraphs. Thus Thomassen's result is partly extended to round decomposable local tournaments. In addition, we also characterize strong round digraphs which contain a pair of arc-disjoint Hamiltonian paths with distinct initial vertices and distinct terminal vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 1; 297-310
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Arc-Disjoint Hamiltonian Cycles in Round Decomposable Locally Semicomplete Digraphs
Autorzy:
Li, Ruijuan
Han, Tingting
Powiązania:
https://bibliotekanauki.pl/articles/31342322.pdf
Data publikacji:
2018-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
locally semicomplete digraph
local tournament
round decomposable
arc-disjoint
Hamiltonian cycle
Hamiltonian path
Opis:
Let D = (V,A) be a digraph; if there is at least one arc between every pair of distinct vertices of D, then D is a semicomplete digraph. A digraph D is locally semicomplete if for every vertex x, the out-neighbours of x induce a semicomplete digraph and the in-neighbours of x induce a semicomplete digraph. A locally semicomplete digraph without 2-cycle is a local tournament. In 2012, Bang-Jensen and Huang [J. Combin Theory Ser. B 102 (2012) 701–714] concluded that every 2-arc-strong locally semicomplete digraph which is not the second power of an even cycle has two arc-disjoint strong spanning subdigraphs, and proposed the conjecture that every 3-strong local tournament has two arc-disjoint Hamiltonian cycles. According to Bang-Jensen, Guo, Gutin and Volkmann, locally semicomplete digraphs have three subclasses: the round decomposable; the non-round decomposable which are not semicomplete; the non-round decomposable which are semicomplete. In this paper, we prove that every 3-strong round decomposable locally semicomplete digraph has two arc-disjoint Hamiltonian cycles, which implies that the conjecture holds for the round decomposable local tournaments. Also, we characterize the 2-strong round decomposable local tournaments each of which contains a Hamiltonian path P and a Hamiltonian cycle arc-disjoint from P.
Źródło:
Discussiones Mathematicae Graph Theory; 2018, 38, 2; 477-490
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies