Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rock mass interaction" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego w Lalikach
The influence of geological engineering and geotechnical conditions on parameter selection of the primary lining of a road tunnel in Laliki
Autorzy:
Majcherczyk, T.
Pilecki, Z.
Niedbalski, Z.
Pilecka, E.
Blajer, M.
Pszonka, J.
Powiązania:
https://bibliotekanauki.pl/articles/216009.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Instytut Gospodarki Surowcami Mineralnymi i Energią PAN
Tematy:
tunel w Lalikach
utwory fliszowe
warunki geologiczne
warunki inżynierskie
badania geotechniczne
obudowa wstępna
współpraca górotworu
tunnel in Laliki
flysch formation
geological conditions
engineering conditions
geotechnical measurements
primary lining
rock mass interaction
Opis:
Tunel drogowy w Lalikach został wykonany w silnie niejednorodnych, w dużym stopniu zniszczonych tektonicznie i w przeważającej części bardzo słabych utworach fliszowych Karpat Zachodnich. W przeważającej części tunel był drążony w warunkach dużego udziału procentowego bardzo słabych łupków ilastych laminowanych i utworów strefy zwietrzelinowej, niekorzystnego, bardzo stromego nachylenia warstw skalnych i zmiennego zawodnienia z wypływami wody w rozluzowanych strefach tektonicznych. Górotwór ten charakteryzuje się dużą niepewnością rozpoznania jego właściwości i struktury. Praca omawia wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego. Przeprowadzono analizę deformacji obudowy wstępnej w zależności od procentowego udziału piaskowców i łupków, punktacji klasyfikacji geomechanicznych RMR (Bieniawski 1989) i QTS Tesařa (1979), typów obudowy wstępnej oraz wykorzystania kotew i mikropali. Analiza ta została poprzedzona charakterystyką warunków geologiczno-inżynierskich na trasie tunelu oraz charakterystyką typów zastosowanej obudowy wstępnej. W trakcie drążenia tunelu z wyprzedzeniem w kalocie, kilkakrotnie występowały przemieszczenia obudowy wstępnej kaloty większe od projektowanych maksymalnych. W przypadku, gdy wartości deformacji osiągały stan alarmowy dla danego typu obudowy i nie wykazywały tendencji do stabilizowania się, podejmowano decyzję o jej wzmocnieniu dodatkowymi kotwami, siatką oraz torkretem do czasu osiągnięcia stabilizacji deformacji. W najtrudniejszych warunkach obudowa wstępna była wzmacniana parasolem mikropalowym. Parametry obudowy dobierano, zgodnie z zasadami NATM, na podstawie prowadzonych na bieżąco obserwacji geologiczno-inżynierskich i geotechnicznych. Tunel w Lalikach jest przykładem bardzo słabej samonośności górotworu. Obserwowane przemieszczenia w górotworze wskazywały, że strefa spękań wokół wyrobiska była stosunkowo silnie rozwinięta. Obudowy wstępne stosowane w tego rodzaju warunkach, na niewielkich głębokościach, powinny charakteryzować się stosunkowo dużą nośnością. Doświadczenia, jakie uzyskano wskazują, że realizacja obudowy wstępnej w silnie zmiennych warunkach fliszu karpackiego wymaga prowadzenia szczegółowych badań geologiczno-inżynierskich w trakcie drążenia tunelu, które należy wykonywać na bieżąco wraz z postępem dobowym dla weryfikacji założeń projektowych. W przypadku potrzeby należy zastosować wzmocnienia obudowy wstępnej na podstawie wyników właściwie prowadzonych pomiarów geotechnicznych zachowania się układu obudowa-górotwór.
The road tunnel in Laliki was excavated in highly heterogeneous, severely tectonically damaged and mainly very weak rocks of the Western Carpathians flysch. In particular, the conditions were characterized by a high percentage of very weak laminated shale and weathered rock mass, an unfavorable and very steep slope of the rock layers and unstable hydrological conditions with outflows of water in loosened tectonic zones. That structure and properties of the rock mass highly uncertain. This paper describes the influence of geological engineering and geotechnical conditions on the primary lining of a main road tunnel. The deformation of the primary lining was analyzed in terms of the percentage share of sandstones and shale, geomechanical classifications RMR (Bieniawski 1989) and QTS (Tesar 1979), types of the primary lining and the use of rock bolts and micropiles. The analysis was preceded by characterization of geological engineering conditions and technological characterization of applied primary linings. Displacements of the primary lining, greater than acceptable, occurred several times in a top heading during tunneling. The primary lining was reinforced by additional rock bolts and wire mesh, a thicker layer of shotcrete and micropiles if deformation reached the emergency state for some types of linings and they didn't indicate any tendency for stabilization. The reinforcement was used until the deformation stabilization was achieved. In the most difficult conditions, the lining was reinforced by a longer micropile umbrella. Parameters for the primary lining were selected on the basis of ongoing geological engineering and geotechnical measurements, in accordance with NATM's principles. The rock mass around the tunnel in Laliki is an example of weak carrying capacity. The observed displacements in the rock mass indicate that the disturbed zone around the tunnel was heavily developed. The primary lining used in such conditions must bear a relatively high load capacity from overlying loosened material and therefore the lack of interaction with the surrounding rock mass should be assumed. The data obtained indicate that the use of the primary lining in the highly variable conditions in the Carpathian flysch requires accurate geological engineering and geotechnical analysis during the day-to-day process of tunneling in order to verify the projected assumptions. The primary linings should be reinforced as needed based on the results of geotechnical measurements, monitoring the interaction between the rock mass and the system of lining.
Źródło:
Gospodarka Surowcami Mineralnymi; 2012, 28, 1; 103-124
0860-0953
Pojawia się w:
Gospodarka Surowcami Mineralnymi
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A model of equilibrium conditions of roof rock mass giving consideration to the yielding capacity of powered supports
Model równowagi stropowej bryły górotworu uwzględniający podatność ścianowej sekcji obudowy zmechanizowanej
Autorzy:
Jaszczuk, M.
Pawlikowski, A.
Powiązania:
https://bibliotekanauki.pl/articles/220211.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
sekcja obudowy zmechanizowanej
podatność
podporność
interakcja z górotworem
powered roof support unit
deformability
yielding capacity
interaction with rock mass
Opis:
The work presents the model of interactions between the powered roof support units and the rock mass, while giving consideration to the yielding capacity of the supports - a value used for the analysis of equilibrium conditions of roof rock mass strata in geological and mining conditions of a given longwall. In the model, the roof rock mass is kept in equilibrium by: support units, the seam, goafs, and caving rocks (Fig. 1). In the assumed model of external load on the powered roof support units it is a new development - in relation to the model applied in selection of supports based on the allowable deflection of roof theory - that the load bearing capacity is dependent on the increment of the inclination of the roof rock mass and on the properties of the working medium, while giving consideration to the air pockets in the hydraulic systems, the load of the caving rocks on the caving shield, introducing the RA support value of the roof rock mass by the coal seam as a closed-form expression and while giving consideration to the additional support provided by the rocks of the goaf as a horizontal component R01H of the goaf reaction. To determine the roof maintenance conditions it is necessary to know the characteristics linking the yielding capacity of the support units with the heading convergence, which may be measured as the inclination angle of the roof rock mass. In worldwide mining, Ground Reaction Curves are used, which allow to determine the required yielding capacity of support units based on the relation between the load exerted on the unit and the convergence of the heading ensuring the equilibrium of the roof rock mass. (Figs. 4 and 8). The equilibrium of the roof rock mass in given conditions is determined at the displacement of the rock mass by the α angle, which impacts the following values: yielding capacity of units FN, vertical component of goaf reaction R01V and the horizontal component of goaf reaction R01H. In the model of load on the support units giving consideration to the load of the caving shield, a model of support unit was used that allows for unequivocal determination of the yielding capacity of the support with consideration given to the height of the unit in use and the change in the inclination of the canopy resulting from the displacement of the roof of the longwall. The yielding capacity of the support unit and its point of application on the canopy was determined using the method of units which allows for the internal forces to be manifested. The weight of the rock mass depends on the geological and mining conditions, for which the shape and dimensions of the rock mass affecting the support unit are determined. The resultant force of the pressure of gob on the gob shield was calculated by assuming that the load may be understood as a pressure of ground on a wall. This required the specification of the volume of the fallen rocks that affect the unit of powered roof supports (Fig. 2). To determine the support of the roof rock mass by the coal seam, experience of the Australian mining industry was used. Experiments regarding the strength properties of coal have exhibited that vertical deformation, at which the highest seam reaction occurs while supporting the roof rock mass, amounts to 0.5% of the longwall’s height. The measure of the width of the contact area between the rock mass and the seam is the width of the additional uncovering of the face roof due to spalling of seam topcorners da (Fig. 2). With the above parameters and the value of the modulus of elasticity of coal in mind, the value of the seam’s reaction may be estimated using the dependence (2). The vertical component of the goafs’ reaction may be determined based on the strength characteristics of the fallen roof, the contact area of the rock mass with the fallen roof and the mean strain of the fallen roof at the area of contact. In the work by Pawlikowski (2014), a research procedure was proposed which encompasses model tests and exploitation tests of the loads exerted on the support units, aimed at the determination of the vertical component of the goaf reaction (Fig. 5). Based on duty cycles of powered roof support units, a mean value of the indicator of contact stiffness between the roof rock mass and the rocks constituting the caving is determined, assuming the linear dependence between the horizontal reaction and the heading convergence. The parameter allows for the determination of the horizontal component of the goafs’ reaction in the external loading model of support units and allows for the determination of the required yielding capacity of supports, required to ensure the equilibrium of the roof rock mass. The experimentally verified model of the external loading of the units was used to conduct simulations of interactions between the KOPEX-095/17-POz support unit and the rock mass in a face characterized by the height of 1.6 m. Based on the data obtained in experiment, the variability of the yielding capacity of the support units was analyzed. A yielding capacity inclination angle of the units was determined for the registered curves (Figs. 6 and 7). At the same time, the presentation of the lines corresponding to the required yielding capacity of units and characterizing the deformability of the support units, allows for the prediction of the yielding capacity of the powered supports and the convergence of the heading in the conditions of a given face (Fig. 9).
W pracy przedstawiono model interakcji sekcji obudowy zmechanizowanej z górotworem uwzględniający podatność sekcji obudowy, który służy do analizy warunków równowagi stropowej bryły górotworu w warunkach geologiczno-górniczych określonej ściany. W modelu tym stropowa bryła górotworu utrzymywana jest w równowadze poprzez podparcie przez: sekcję obudowy, pokład, zroby i skały zawału uporządkowanego (Rys. 1). W przyjętym modelu obciążenia zewnętrznego sekcji obudowy zmechanizowanej w stosunku do modelu stosowanego w metodzie doboru sekcji obudowy, opartej o teorię dopuszczalnego ugięcia stropu istotne novum stanowi uzależnienie podporności sekcji od przyrostu kąta nachylenia stropowej bryły górotworu i właściwości medium roboczego z uwzględnieniem zapowietrzenia układu hydraulicznego, uwzględnienie obciążenia osłony odzawałowej gruzowiskiem, wprowadzenie w postaci jawnej podparcia stropowej bryły górotworu przez pokład węgla RA oraz uwzględnienie dodatkowego podparcia przez skały tworzące zawał uporządkowany w postaci składowej poziomej reakcji zrobów R01H. Dla ustalenia warunków utrzymania stropu niezbędna jest znajomość charakterystyki wiążącej podporność sekcji obudowy z konwergencją wyrobiska, której miarą może być kąt nachylenia stropowej bryły górotworu. W górnictwie światowym stosuje się krzywe reakcji górotworu GRC (Ground Response Curves), które pozwalają na wyznaczanie wymaganej podporności sekcji obudowy na podstawie relacji obciążenia sekcji i konwergencji wyrobiska zapewniającej równowagę stropowej bryły górotworu (Rys. 4 i 8). Stan równowagi stropowej bryły górotworu w danych warunkach ustala się przy przemieszczeniu stropowej bryły górotworu o kąt α, który wpływa na wartość: podporności sekcji FN, składowej pionowej reakcji zrobów R01V i składowej poziomej reakcji zrobów R01H. W modelu obciążenia sekcji obudowy z uwzględnieniem obciążenia osłony odzawałowej, wykorzystano model sekcji obudowy umożliwiający jednoznaczne wyznaczenie podporności sekcji obudowy z uwzględnieniem danej wysokości użytkowania sekcji i zmiany nachylenia stropnicy wynikającej z przemieszczania stropu wyrobiska ścianowego. Podporność sekcji obudowy FN oraz jej punkt przyłożenia na stropnicy wyznaczono przy zastosowaniu metody przecięć, umożliwiającej uzewnętrznienie sił wewnętrznych. Ciężar stropowej bryły górotworu zależy od warunków geologiczno-górniczych, dla których określa się kształt i wymiary bryły górotworu oddziałującej na sekcję obudowy. Wypadkową nacisku zawału na osłonę odzawałową wyznaczono traktując jej obciążenie jak parcie gruntu na ścianę. Wymagało to określenia objętości rumowiska skalnego, które oddziałuje na sekcję obudowy zmechanizowanej (Rys. 2). Do wyznaczenia podparcia stropowej bryły górotworu przez pokład węgla wykorzystano wiedzę wynikającą z doświadczeń górnictwa australijskiego. Badania eksperymentalne dotyczące właściwości wytrzymałościowych węgla wykazały, że odkształcenie pionowe, przy którym występuje największa reakcja pokładu przy podparciu stropowej bryły górotworu, stanowi 0,5% wysokości ściany. Miarą szerokości kontaktu tej bryły z pokładem jest szerokość dodatkowego odsłonięcia pułapu wyrobiska w wyniku odspajania górnych naroży pokładu da (Rys. 3). Znając powyższe parametry oraz wartość modułu sprężystości węgla można oszacować wartość reakcji pokładu z zależności (2). Składową pionową reakcji zrobów R01V można wyznaczyć na podstawie charakterystyki wytrzymałościowej rumowiska zawałowego, powierzchni styku bryły górotworu z tym rumowiskiem oraz średniego zgniotu rumowiska, występującego na tej powierzchni styku. W pracy Pawlikowskiego (2014) zaproponowano procedurę badawczą obejmującą badania eksploatacyjne i modelowe obciążenia sekcji obudowy mającą na celu wyznaczenie składowej poziomej reakcji zrobów (Rys. 5). Na podstawie cykli pracy sekcji obudowy zmechanizowanej wyznacza się wartość średnią wskaźnika sztywności kontaktu stropowej bryły górotworu ze skałami tworzącymi zawał uporządkowany, przy założeniu liniowej zależności reakcji poziomej od konwergencji wyrobiska. Parametr ten umożliwia wyznaczenie składowej poziomej reakcji zrobów w modelu obciążenia zewnętrznego sekcji obudowy oraz pozwala na wyznaczenie wymaganej podporności sekcji obudowy niezbędnej dla zapewnienia równowagi stropowej bryły górotworu. Zweryfikowany doświadczalnie model obciążenia zewnętrznego sekcji posłużył do przeprowadzenia symulacji interakcji sekcji obudowy KOPEX-095/17-POz z górotworem w ścianie o wysokości 1,6 m. W oparciu o uzyskane dane doświadczalne przeanalizowano zmienność podatności sekcji obudowy. Dla zarejestrowanych przebiegów rzeczywistych wyznaczono kąt nachylenia charakterystyki podpornościowej sekcji (Rys. 6 i 7). Równoczesne przedstawienie prostych obrazujących wymaganą podporność sekcji i charakteryzujących podatność sekcji obudowy pozwala na predykcję podporności sekcji obudowy zmechanizowanej i konwergencji wyrobiska w warunkach danej ściany (Rys. 9).
Źródło:
Archives of Mining Sciences; 2017, 62, 4; 698-704
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies