Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "robust optimisation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Improving logic-based Benders’ algorithms for solving min-max regret problems
Autorzy:
Assunção, Lucas
Santos, Andréa Cynthia
Noronha, Thiago F.
Andrade, Rafael
Powiązania:
https://bibliotekanauki.pl/articles/2099670.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
robust optimisation
min-max regret problem
Benders’ decomposition
warm-start procedure
Opis:
This paper addresses a class of problems under interval data uncertainty, composed of min-max regret generalisations of classical 0-1 optimisation problems with interval costs. These problems are called robust-hard when their classical counterparts are already NP-hard. The state-of-the-art exact algorithms for interval 0-1 min-max regret problems in general work by solving a corresponding mixed- -integer linear programming formulation in a Benders’ decomposition fashion. Each of the possibly exponentially many Benders’ cuts is separated on the fly by the resolution of an instance of the classical 0-1 optimisation problem counterpart. Since these separation subproblems may be NP-hard, not all of them can be easily modelled using linear programming (LP), unless P equals NP. In this work, we formally describe these algorithms through a logic-based Benders’ decomposition framework and assess the impact of three warm-start procedures. These procedures work by providing promising initial cuts and primal bounds through the resolution of a linearly relaxed model and an LP-based heuristic. Extensive computational experiments in solving two challenging robust-hard problems indicate that these procedures can highly improve the quality of the bounds obtained by the Benders’ framework within a limited execution time. Moreover, the simplicity and effectiveness of these speed-up procedures make them an easily reproducible option when dealing with interval 0-1 min-max regret problems in general, especially the more challenging subclass of robust-hard problems.
Źródło:
Operations Research and Decisions; 2021, 31, 2; 23--57
2081-8858
2391-6060
Pojawia się w:
Operations Research and Decisions
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Kriging based robust optimisation algorithm for minimax problems in electromagnetics
Autorzy:
Li, Y.
Rotaru, M.
Sykulski, J. K.
Powiązania:
https://bibliotekanauki.pl/articles/141299.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
worst-case optimisation
minimax problems
kriging
robust design
Opis:
The paper discusses some of the recent advances in kriging based worst-case design optimisation and proposes a new two-stage approach to solve practical problems. The efficiency of the infill points allocation is improved significantly by adding an extra layer of optimisation enhanced by a validation process.
Źródło:
Archives of Electrical Engineering; 2016, 65, 4; 843-854
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Robust goal programming
Autorzy:
Kuchta, D.
Powiązania:
https://bibliotekanauki.pl/articles/970486.pdf
Data publikacji:
2004
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
programowanie z wieloma warunkami
rozwiązanie solidne
optymalizacja przedziałowa
multiobjective programming
robust solution
interval optimisation
Opis:
In the paper a new approach to goal programming is presented: the robust approach, applied so far to a single-objective linear programming. It is a "pessimistic" approach, meant to find a solution which will be reasonably good even in a bad case, but it is based on the assumption that almost never everything goes bad - the decision maker can control and simulate the pessimistic aspect of the decision situation. The pessimism refers here to uncertain coefficients in the goal functions. It is assumed that in each case only a certain number of them can take on unfavourable values - but we do not know which ones. A robust solution, i.e. the one which will be good even in the most pessimistic case among those considered to be possible - is determined, using only the linear programming methods.
Źródło:
Control and Cybernetics; 2004, 33, 3; 501-510
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies