Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "robust modeling" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
A Bayesian Small Area Model with Dirichlet Processes on the Responses
Autorzy:
Yin, Jiani
Nandram, Balgobin
Powiązania:
https://bibliotekanauki.pl/articles/1058988.pdf
Data publikacji:
2020-09-04
Wydawca:
Główny Urząd Statystyczny
Tematy:
Bayesian computation
bootstrap
predictive inference
robust modeling
computational and model diagnostics
survey data
Opis:
Typically survey data have responses with gaps, outliers and ties, and the distributions of the responses might be skewed. Usually, in small area estimation, predictive inference is done using a two-stage Bayesian model with normality at both levels (responses and area means). This is the Scott-Smith (S-S) model and it may not be robust against these features. Another model that can be used to provide a more robust structure is the two-stage Dirichlet process mixture (DPM) model, which has independent normal distributions on the responses and a single Dirichlet process on the area means. However, this model does not accommodate gaps, outliers and ties in the survey data directly. Because this DPM model has a normal distribution on the responses, it is unlikely to be realized in practice, and this is the problem we tackle in this paper. Therefore, we propose a two-stage non-parametric Bayesian model with several independent Dirichlet processes at the first stage that represents the data, thereby accommodating some of the difficulties with survey data and permitting a more robust predictive inference. This model has a Gaussian (normal) distribution on the area means, and so we call it the DPG model. Therefore, the DPM model and the DPG model are essentially the opposite of each other and they are both different from the S-S model. Among the three models, the DPG model gives us the best head-start to accommodate the features of the survey data. For Bayesian predictive inference, we need to integrate two data sets, one with the responses and other with area sizes. An application on body mass index, which is integrated with census data, and a simulation study are used to compare the three models (S-S, DPM, DPG); we show that the DPG model might be preferred.
Źródło:
Statistics in Transition new series; 2020, 21, 3; 1-19
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Total production maintenance and robust scheduling for a production system efficiency increasing
Autorzy:
Paprocka, I.
Powiązania:
https://bibliotekanauki.pl/articles/99766.pdf
Data publikacji:
2012
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
Total Productive Maintenance
robust scheduling
modeling
simulation
Opis:
In the paper, the proposition of application of two methodologies: the predictive scheduling and Total Productive Maintenance – TPM to increase efficiency of a production system is presented. To assess wastes due to unplanned events in the machine’s work the Overall Equipment Effectiveness (OEE) indicator is applied. Any failure of a bottle neck decreases value of the OEE. In this paper, the problem of predicting a time of the bottle neck failure is considered. In the paper, models of a production system and failures are presented. For the bottle neck various reliability characteristics are computed: the probability that, beginning with moment t0 , the first failure occurs after given time t, probability that in the interval [f ,g], there occurs at least one failure, failure intensity function, Mean Time To Failure (MTTF) and Mean Time of Repair (MTTR). Having the MTTF and MTTR of the bottle neck, a robust schedule is generated. At the time of predicted failure, preventive actions and technical survey of the machine are scheduled. In the second paper a numerical example is given.
Źródło:
Journal of Machine Engineering; 2012, 12, 3; 52-61
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A numerical example of total production maintenance and robust scheduling application for a production system efficiency increasing
Autorzy:
Paprocka, I.
Urbanek, D.
Powiązania:
https://bibliotekanauki.pl/articles/99603.pdf
Data publikacji:
2012
Wydawca:
Wrocławska Rada Federacji Stowarzyszeń Naukowo-Technicznych
Tematy:
Total Productive Maintenance
robust scheduling
modeling
simulation
Opis:
In the paper, the proposition of application of two methodologies: the predictive scheduling and Total Productive Maintenance - TPM to increase efficiency of a production system is presented. In this paper, an example of problem of predicting a time of a bottle neck failure is presented. Using the Statistica program, histograms that show the graphical relationship of a number of observations and failure-free times of the bottle neck for historical periods are created. The fitting of the histograms to the theoretical distributions: normal, exponential, gamma and Weibull using appropriate tests (for example the Kolmogorov-Smirnov test for normal distribution) is researched. After finding distribution and setting parameters for historical periods, for the next scheduling horizon values of parameters are extrapolated using the regression method in the Statistica program. For the bottle neck various reliability characteristics are computed. Having the Mean Time To Failure (MTTF) and Mean Time of Repair (MTTR) of the bottle neck, robust schedule is generated. At the time of the predicted failure, preventive actions and technical survey of the machine are scheduled. The production system is modeled in the simulation program - Enterprise Dynamics 8.1.
Źródło:
Journal of Machine Engineering; 2012, 12, 3; 62-79
1895-7595
2391-8071
Pojawia się w:
Journal of Machine Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The art and science of modeling decision-making under severe uncertainty
Autorzy:
Sniedovich, M.
Powiązania:
https://bibliotekanauki.pl/articles/375963.pdf
Data publikacji:
2007
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
mathematical modeling
severe uncertainty
maximin
worst-case analysis
robust optimization
info-gap
Opis:
For obvious reasons, models for decision-making under severe uncertainty are austere. Simply put, there is precious little to work with under these conditions. This fact highlights the great importance of utilizing in such cases the ingredients of the mathematical model to the fullest extent, which in turn brings under the spotlight the art of mathematical modeling. In this discussion we examine some of the subtle considerations that are called for in the mathematical modeling of decision-making under severe uncertainty in general, and worst-case analysis in particular. As a case study we discuss the lessons learnt on this front from the Info-Gap experience.
Źródło:
Decision Making in Manufacturing and Services; 2007, 1, 1-2; 111-136
1896-8325
2300-7087
Pojawia się w:
Decision Making in Manufacturing and Services
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies