Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "rekurencyjna sieć neuronowa" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Robust zeroing neural networks with two novel power-versatile activation functions for solving dynamic Sylvester equation
Autorzy:
Zhou, Peng
Tan, Mingtao
Powiązania:
https://bibliotekanauki.pl/articles/2173674.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
recurrent neural network
RNN
zeroing neural network
ZNN
robust zeroing neural network
RZNN
fixed-time convergence
rekurencyjna sieć neuronowa
zerowanie sieci neuronowej
konwergencja w ustalonym czasie
Opis:
In this work, two robust zeroing neural network (RZNN) models are presented for online fast solving of the dynamic Sylvester equation (DSE), by introducing two novel power-versatile activation functions (PVAF), respectively. Differing from most of the zeroing neural network (ZNN) models activated by recently reported activation functions (AF), both of the presented PVAF-based RZNN models can achieve predefined time convergence in noise and disturbance polluted environment. Compared with the exponential and finite-time convergent ZNN models, the most important improvement of the proposed RZNN models is their fixed-time convergence. Their effectiveness and stability are analyzed in theory and demonstrated through numerical and experimental examples.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 3; art. no. e141307
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of modelling phase transformations with the use of LSTM network on the accuracy of computations of residual stresses for the hardening process
Autorzy:
Wróbel, Joanna
Kulawik, Adam
Powiązania:
https://bibliotekanauki.pl/articles/27311451.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
hardening process
temperature
phase transformations in the solid state
effective stresses
numerical modelling
RNN
recurrent neural network
proces hartowania
temperatura
przemiany fazowe w stanie stałym
modelowanie numeryczne
rekurencyjna sieć neuronowa
naprężenie efektywne
Opis:
Replacing mathematical models with artificial intelligence tools can play an important role in numerical models. This paper analyses the modeling of the hardening process in terms of temperature, phase transformations in the solid state and stresses in the elastic-plastic range. Currently, the use of artificial intelligence tools is increasing, both to make greater generalizations and to reduce possible errors in the numerical simulation process. It is possible to replace the mathematical model of phase transformations in the solid state with an artificial neural network (ANN). Such a substitution requires an ANN network that converts time series (temperature curves) into shares of phase transformations with a small training error. With an insufficient training level of the network, significant differences in stress values will occur due to the existing couplings. Long-Short-Term Memory (LSTM) networks were chosen for the analysis. The paper compares the differences in stress levels with two coupled models using a macroscopic model based on CCT diagram analysis and using the Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Koistinen-Marburger (KM) equations, against the model memorized by the LSTM network. In addition, two levels of network training accuracy were also compared. Considering the results obtained from the model based on LSTM networks, it can be concluded that it is possible to effectively replace the classical model in modeling the phenomena of the heat treatment process.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2023, 71, 4; art. no. e145681
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Urban traffic crash analysis using deep learning techniques
Analiza kolizji w ruchu miejskim z wykorzystaniem technik głębokiego uczenia
Autorzy:
Sobhana, Mummaneni
Vemulapalli, Nihitha
Mendu, Gnana Siva Sai Venkatesh
Ginjupalli, Naga Deepika
Dodda, Pragathi
Subramanyam, Rayanoothala Bala Venkata
Powiązania:
https://bibliotekanauki.pl/articles/27315440.pdf
Data publikacji:
2023
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
classification
gated recurrent unit
long-short term memory
multilayer perceptron
recurrent neural network
road accidents
klasyfikacja
pamięć długotrwała
pamięć krótkotrwała
perceptron wielowarstwowy
rekurencyjna sieć neuronowa
wypadki drogowe
Opis:
Road accidents are concerningly increasing in Andhra Pradesh. In 2021, Andhra Pradesh experienced a 20 percent upsurge in road accidents. The state's unfortunate position of being ranked eighth in terms of fatalities, with 8,946 lives lost in 22,311 traffic accidents, underscores the urgent nature of the problem. The significant financial impact on the victims and their families stresses the necessity for effective actions to reduce road accidents.This study proposes a framework that collects accident data from regions, namely Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam,and Gandhinagar in Vijayawada(India)from 2019 to 2021. The dataset comprises over 12,000 records of accident data. Deep learning techniquesare applied to classify the severity of road accidents into Fatal, Grievous, and Severe Injuries. The classification procedure leverages advanced neural network models, including the Multilayer Perceptron, Long-Short Term Memory, Recurrent Neural Network, and Gated Recurrent Unit. These modelsare trained on the collected data to accurately predict the severity of road accidents. The project study to make important contributions for suggesting proactive measures and policies to reduce the severity and frequency of road accidents in Andhra Pradesh.
Liczba wypadków drogowych w Andhra Pradesh niepokojąco rośnie. W 2021 r. stan Andhra Pradesh odnotował 20% wzrost liczby wypadków drogowych. Niefortunna pozycja stanu, który zajmuje ósme miejsce pod względem liczby ofiar śmiertelnych, z 8946 ofiarami śmiertelnymiw 22311 wypadkach drogowych, podkreśla pilny charakter problemu. Znaczący wymiar finansowy dla ofiari ich rodziny podkreśla konieczność podjęcia skutecznych działań w celu ograniczenia liczby wypadków drogowych. W niniejszym badaniu zaproponowano system gromadzenia danych o wypadkachz regionów Patamata, Penamaluru, Mylavaram, Krishnalanka, Ibrahimpatnam i Gandhinagar w Vijayawada (India) w latach 2019–2021. Zbiór danych obejmuje ponad 12 000 rekordów danych o wypadkach. Techniki głębokiego uczenia są stosowane do klasyfikowania wagi wypadków drogowychna śmiertelne, poważne i ciężkie obrażenia. Procedura klasyfikacji wykorzystuje zaawansowane modele sieci neuronowych, w tymwielowarstwowy perceptron, pamięć długoterminową i krótkoterminową, rekurencyjną sieć neuronową i Gated Recurrent Unit. Modele te są trenowane na zebranych danych w celu dokładnego przewidywania wagi wypadków drogowych. Projekt ma wnieść istotny wkład w sugerowanie proaktywnych środków i polityk mających na celu zmniejszenie dotkliwości i częstotliwości wypadków drogowych w Andhra Pradesh.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2023, 13, 3; 56--63
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Heuristic modeling of objects and processes using dynamic neural networks
Heurystyczne modelowanie obiektów i procesów przy pomocy dynamicznych sieci neuronowych
Autorzy:
Przystałka, P.
Powiązania:
https://bibliotekanauki.pl/articles/327816.pdf
Data publikacji:
2006
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
sztuczna sieć neuronowa
lokalnie rekurencyjna sieć neuronowa
systemy dynamiczne
metoda quasi-Newtonowska
modelowanie heurystyczne
artificial neural network
locally recurrent neural network
dynamic systems
quasi-Newton methods
heuristic modelling
Opis:
The methodology of heuristic modeling is one of the subjects included in the activities developed by the Department of Fundamentals of Machinery Design [4, 6]. Among all the approaches of heuristic modeling some of the most common are artificial neural networks. There are many papers and books devoted to applications of neural networks for modeling dynamic systems [1, 2, 4, 5, 6, 7]. In this paper, known approach basing on dynamic neuron model is presented (dynamic neuron with IIR filter in the activation block [2]) but some developments are introduced. Locally recurrent networks which are composed of dynamic neural units described in [2, 5, 7] are able to model behavior of complex dynamic systems. Nevertheless, they have one major disadvantage, that is, neural networks composed of these neurons are not able to represent stochastic behaviors of some objects [4,6]. By introducing the ARMAX (or ARX) system into dynamic neuron model author has received dynamic neuron unit that never behaves in the same way (it brings an artificial neuron closer and closer to the biological model). In this paper the author presents formal description of dynamic neuron unit with ARMAX system in the feedback block. There are also described a general structure of dynamic neural network composed of these neurons, two known training methods and some commonly used quality measures. At the end of the paper three examples of applications are given.
Metodologia heurystycznego modelowania obiektów i procesów jest jednym z kierunków badań rozwijanym prze Katedrę Podstaw Konstrukcji Maszyn [4, 6]. Spośród wielu metod modelowania heurystycznego duże znaczenie odgrywają metody bazujące na sztucznych sieciach neuronowych. Można wyróżnić wiele ciekawych prac badawczych prowadzonych w kierunku modelowania systemów dynamicznych z zastosowaniem tego typu narzędzia [1, 2, 4, 5, 6, 7]. W artykule zaprezentowano znane podejście bazujące na dynamicznych neuronach (dynamiczny neuron z filtrem IIR w bloku aktywacyjnym [2]) z pewnymi modyfikacjami. Lokalnie rekurencyjne sieci neuronowe złożone z dynamicznych neuronów opisane w [2, 5, 7] nadają się do modelowania zachowania złożonych systemów dynamicznych. Jednakże, posiadają one jedną główną wadę tzn. nie są zdolne do reprezentowania zachowania losowego niektórych obiektów [4, 6]. Poprzez wprowadzenie systemu typu ARMAX (ARX) do modeli dynamicznych neuronów autor otrzymał dynamiczny model neuronu, który nigdy nie zachowują się w ten sam sposób (przybliża to model sztucznego neuronu do jego biologicznego wzoru). W artykule autor prezentuje formalny opis dynamicznego neuronu z systemem typu ARMAX w bloku sprzężenie zwrotnego. Opisuje również ogólną strukturę dynamicznej sieci neuronowej złożonej z tych neuronów, dwa znane algorytmy trenujące oraz powszechnie stosowane miary jakości. Przykładowe zastosowania opisywanych sieci zaprezentowane są w końcowym fragmencie opracowania.
Źródło:
Diagnostyka; 2006, 2(38); 31-36
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear model predictive control of a boiler unit: a fault tolerant control study
Autorzy:
Patan, K.
Korbicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/331450.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rekurencyjna sieć neuronowa
model procesu
sterowanie predykcyjne
detekcja uszkodzeń
zbiornik przepływowy
recurrent neural networks
process model
predictive control
fault detection
boiler unit
Opis:
This paper deals with a nonlinear model predictive control designed for a boiler unit. The predictive controller is realized by means of a recurrent neural network which acts as a one-step ahead predictor. Then, based on the neural predictor, the control law is derived solving an optimization problem. Fault tolerant properties of the proposed control system are also investigated. A set of eight faulty scenarios is prepared to verify the quality of the fault tolerant control. Based of different faulty situations, a fault compensation problem is also investigated. As the automatic control system can hide faults from being observed, the control system is equipped with a fault detection block. The fault detection module designed using the one-step ahead predictor and constant thresholds informs the user about any abnormal behaviour of the system even in the cases when faults are quickly and reliably compensated by the predictive controller.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 1; 225-237
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting future values of time series using the lstm network on the example of currencies and WIG20 companies
Prognozowanie przyszłych wartości szeregów czasowych z wykorzystaniem sieci lstm na przykładzie kursów walut i spółek WIG20
Autorzy:
Mróz, Bartosz
Nowicki, Filip
Powiązania:
https://bibliotekanauki.pl/articles/2016294.pdf
Data publikacji:
2020
Wydawca:
Politechnika Bydgoska im. Jana i Jędrzeja Śniadeckich. Wydawnictwo PB
Tematy:
recurrent neural network
RNN
gated recurrent unit
GRU
long short-term memory
LSTM
rekurencyjna sieć neuronowa
blok rekurencyjny
pamięć długookresowa
Opis:
The article presents a comparison of the RNN, GRU and LSTM networks in predicting future values of time series on the example of currencies and listed companies. The stages of creating an application which is a implementation of the analyzed issue were also shown – the selection of networks, technologies, selection of optimal network parameters. Additionally, two conducted experiments were discussed. The first was to predict the next values of WIG20 companies, exchange rates and cryptocurrencies. The second was based on investments in cryptocurrencies guided solely by the predictions of artificial intelligence. This was to check whether the investments guided by the predictions of such a program have a chance of effective earnings. The discussion of the results of the experiment includes an analysis of various interesting phenomena that occurred during its duration and a comprehensive presentation of the relatively high efficiency of the proposed solution, along with all kinds of graphs and comparisons with real data. The difficulties that occurred during the experiments, such as coronavirus or socio-economic events, such as riots in the USA, were also analyzed. Finally, elements were proposed that should be improved or included in future versions of the solution – taking into account world events, market anomalies and the use of supervised learning.
W artykule przedstawiono porównanie sieci RNN, GRU i LSTM w przewidywaniu przyszłych wartości szeregów czasowych na przykładzie walut i spółek giełdowych. Przedstawiono również etapy tworzenia aplikacji będącej realizacją analizowanego zagadnienia – dobór sieci, technologii, dobór optymalnych parametrów sieci. Dodatkowo omówiono dwa przeprowadzone eksperymenty. Pierwszym było przewidywanie kolejnych wartości spółek z WIG20, kursów walut i kryptowalut. Drugi opierał się na inwestycjach w kryptowaluty, kierując się wyłącznie przewidywaniami sztucznej inteligencji. Miało to na celu sprawdzenie, czy inwestowanie na podstawie przewidywania takiego programu pozwala na efektywne zarobki. Omówienie wyników eksperymentu obejmuje analizę różnych ciekawych zjawisk, które wystąpiły w czasie jego trwania oraz kompleksowe przedstawienie relatywnie wysokiej skuteczności proponowanego rozwiązania wraz z wszelkiego rodzaju wykresami i porównaniami z rzeczywistymi danymi. Analizowano również trudności, które wystąpiły podczas eksperymentów, takie jak koronawirus, wydarzenia społeczno-gospodarcze czy zamieszki w USA. Na koniec zaproponowano elementy, które należałoby ulepszyć lub uwzględnić w przyszłych wersjach rozwiązania, uwzględniając wydarzenia na świecie, anomalie rynkowe oraz wykorzystanie uczenia się nadzorowanego.
Źródło:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy; 2020, 24; 13-30
1899-0088
Pojawia się w:
Zeszyty Naukowe. Telekomunikacja i Elektronika / Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new approach to image reconstruction from projections using a recurrent neural network
Autorzy:
Cierniak, R.
Powiązania:
https://bibliotekanauki.pl/articles/907945.pdf
Data publikacji:
2008
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
rekonstrukcja obrazu
sieć neuronowa
sieć rekurencyjna
image reconstruction from projections
neural networks
recurrent net
Opis:
A new neural network approach to image reconstruction from projections considering the parallel geometry of the scanner is presented. To solve this key problem in computed tomography, a special recurrent neural network is proposed. The reconstruction process is performed during the minimization of the energy function in this network. The performed computer simulations show that the neural network reconstruction algorithm designed to work in this way outperforms conventional methods in the obtained image quality.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2008, 18, 2; 147-157
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of optimization algorithms of connectionist temporal classifier for speech recognition system
Porównanie algorytmów optymalizacji klasyfikatora czasowego do systemu rozpoznawania mowy
Autorzy:
Amirgaliyev, Yedilkhan
Darkhan, Kuanyshbay
Shoiynbek, Aisultan
Powiązania:
https://bibliotekanauki.pl/articles/408796.pdf
Data publikacji:
2019
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
recurrent neural network
search method
acoustic
systems modeling language
rekurencyjna sieć neuronowa
metoda wyszukiwania
akustyka
język modelowania systemów
Opis:
This paper evaluates and compares the performances of three well-known optimization algorithms (Adagrad, Adam, Momentum) for faster training the neural network of CTC algorithm for speech recognition. For CTC algorithms recurrent neural network has been used, specifically Long- Short-Term memory. LSTM is effective and often used model. Data has been downloaded from VCTK corpus of Edinburgh University. The results of optimization algorithms have been evaluated by the Label error rate and CTC loss.
W artykule dokonano oceny i porównania wydajności trzech znanych algorytmów optymalizacyjnych (Adagrad, Adam, Momentum) w celu przyspieszenia treningu sieci neuronowej algorytmu CTC do rozpoznawania mowy. Dla algorytmów CTC wykorzystano rekurencyjną sieć neuronową, w szczególności LSTM, która jest efektywnym i często używanym modelem. Dane zostały pobrane z wydziału VCTK Uniwersytetu w Edynburgu. Wyniki algorytmów optymalizacyjnych zostały ocenione na podstawie wskaźników Label error i CTC loss.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2019, 9, 3; 54-57
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies