Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "regular graphs" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Minimal regular graphs with given girths and crossing numbers
Autorzy:
Chia, G.
Gan, C.
Powiązania:
https://bibliotekanauki.pl/articles/744483.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
regular graphs
girth
crossing numbers
Opis:
This paper investigates on those smallest regular graphs with given girths and having small crossing numbers.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 2; 223-237
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Interval edge colorings of some products of graphs
Autorzy:
Petrosyan, Petros
Powiązania:
https://bibliotekanauki.pl/articles/743918.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
interval coloring
regular graph
products of graphs
Opis:
An edge coloring of a graph G with colors 1,2,...,t is called an interval t-coloring if for each i ∈ {1,2,...,t} there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is an integer t ≥ 1 for which G has an interval t-coloring. Let ℜ be the set of all interval colorable graphs. In 2004 Kubale and Giaro showed that if G,H ∈ , then the Cartesian product of these graphs belongs to . Also, they formulated a similar problem for the lexicographic product as an open problem. In this paper we first show that if G ∈ , then G[nK₁] ∈ for any n ∈ ℕ. Furthermore, we show that if G,H ∈ and H is a regular graph, then strong and lexicographic products of graphs G,H belong to . We also prove that tensor and strong tensor products of graphs G,H belong to if G ∈ and H is a regular graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2011, 31, 2; 357-373
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On composition of signed graphs
Autorzy:
Shahul Hameed, K.
Germina, K.
Powiązania:
https://bibliotekanauki.pl/articles/743222.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed graph
eigenvalues
graph composition
regular graphs
net-regular signed graphs
Opis:
A graph whose edges are labeled either as positive or negative is called a signed graph. In this article, we extend the notion of composition of (unsigned) graphs (also called lexicographic product) to signed graphs. We employ Kronecker product of matrices to express the adjacency matrix of this product of two signed graphs and hence find its eigenvalues when the second graph under composition is net-regular. A signed graph is said to be net-regular if every vertex has constant net-degree, namely, the difference of the number of positive and negative edges incident with a vertex. We also characterize balance in signed graph composition and have some results on the Laplacian matrices of this product.
Źródło:
Discussiones Mathematicae Graph Theory; 2012, 32, 3; 507-516
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed star (k, k)-domatic number of a graph
Autorzy:
Sheikholeslami, S. M.
Volkmann, L.
Powiązania:
https://bibliotekanauki.pl/articles/254927.pdf
Data publikacji:
2014
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
signed star (k, k)-domatic number
signed star domatic number
signed star k-dominating function
signed star dominating function
signed star k-domination number
signed star domination number
regular graphs
Opis:
Let G be a simple graph without isolated vertices with vertex set V (G) and edge set E(G) and let k be a positive integer. A function ƒ: E(G) →{−1, 1} is said to be a signed star k-dominating function on [formula] for every vertex v of G, where E(v) = {uv ∈ E(G) | u ∈ N(v)}. A set {f1, f2, . . . , fd} of signed star k-dominating functions on G with the property that [formula] for each e ∈ E(G) is called a signed star (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed star (k, k)-dominating family on G is the signed star (k, k)-domatic number of G, denoted by [formula]. In this paper we study properties of the signed star (k, k)-domatic number [formula]. In particular, we present bounds on [formula], and we determine the signed (k, k)-domatic number of some regular graphs. Some of our results extend these given by Atapour, Sheikholeslami, Ghameslou and Volkmann [Signed star domatic number of a graph, Discrete Appl. Math. 158 (2010), 213–218] for the signed star domatic number.
Źródło:
Opuscula Mathematica; 2014, 34, 3; 609-620
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds on the Signed Total (k, k)-Domatic Number of Graphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31339301.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total (k
k)-domatic number
signed total k-dominating function
signed total k-domination number
regular graphs
Opis:
Let $G$ be a graph with vertex set $V (G)$, and let $ f : V (G) \rightarrow {−1, 1}$ be a two-valued function. If $ k \geq 1$ is an integer and \( \sum_{ x \in N(v)} f(x) \geq k \) for each $ v \in V (G) $, where $N(v)$ is the neighborhood of $v$, then $f$ is a signed total $k$-dominating function on $G$. A set ${f_1, f_2, . . ., f_d}$ of distinct signed total k-dominating functions on $G$ with the property that \( \sum_{i=1}^d f_i(x) \leq k \) for each $ x \in V (G)$, is called a signed total ($k$, $k$)-dominating family (of functions) on $G$. The maximum number of functions in a signed total ($k$, $k$)-dominating family on $G$ is the signed total ($k$, $k$)-domatic number of $G$. In this article we mainly present upper bounds on the signed total ($k$, $k$)- domatic number, in particular for regular graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 641-650
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on the Locating-Total Domination in Graphs
Autorzy:
Miller, Mirka
Rajan, R. Sundara
Jayagopal, R.
Rajasingh, Indra
Manuel, Paul
Powiązania:
https://bibliotekanauki.pl/articles/31341658.pdf
Data publikacji:
2017-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
dominating set
total dominating set
locating-dominating set
locating-total dominating set
regular graphs
Opis:
In this paper we obtain a sharp (improved) lower bound on the locating-total domination number of a graph, and show that the decision problem for the locating-total domination is NP-complete.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 3; 745-754
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On edge product cordial graphs
Autorzy:
Ivanco, Jaroslav
Powiązania:
https://bibliotekanauki.pl/articles/255152.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
edge product cordial labelings
dense graphs
regular graphs
Opis:
An edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize graphs admitting an edge product cordial labeling. Using this characterization we investigate the edge product cordiality of broad classes of graphs, namely, dense graphs, dense bipartite graphs, connected regular graphs, unions of some graphs, direct products of some bipartite graphs, joins of some graphs, maximal k-degenerate and related graphs, product cordial graphs.
Źródło:
Opuscula Mathematica; 2019, 39, 5; 691-703
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Regular Colorings in Regular Graphs
Autorzy:
Bernshteyn, Anton
Khormali, Omid
Martin, Ryan R.
Rollin, Jonathan
Rorabaugh, Danny
Shan, Songling
Uzzell, Andrew J.
Powiązania:
https://bibliotekanauki.pl/articles/31516306.pdf
Data publikacji:
2020-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge coloring
graph factors
regular graphs
Opis:
An (r − 1, 1)-coloring of an r-regular graph G is an edge coloring (with arbitrarily many colors) such that each vertex is incident to r − 1 edges of one color and 1 edge of a different color. In this paper, we completely characterize all 4-regular pseudographs (graphs that may contain parallel edges and loops) which do not have a (3, 1)-coloring. Also, for each r ≥ 6 we construct graphs that are not (r −1, 1)-colorable and, more generally, are not (r − t, t)-colorable for small t.
Źródło:
Discussiones Mathematicae Graph Theory; 2020, 40, 3; 795-806
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Supermagic Graphs with Many Different Degrees
Autorzy:
Kovář, Petr
Kravčenko, Michal
Silber, Adam
Krbeček, Matěj
Powiązania:
https://bibliotekanauki.pl/articles/32324150.pdf
Data publikacji:
2021-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph labeling
supermagic labeling
non-regular graphs
Opis:
Let G = (V, E) be a graph with n vertices and e edges. A supermagic labeling of G is a bijection f from the set of edges E to a set of consecutive integers {a, a + 1, . . ., a + e − 1} such that for every vertex v ∈ V the sum of labels of all adjacent edges equals the same constant k. This k is called a magic constant of f, and G is a supermagic graph. The existence of supermagic labeling for certain classes of graphs has been the scope of many papers. For a comprehensive overview see Gallian’s Dynamic survey of graph labeling in the Electronic Journal of Combinatorics. So far, regular or almost regular graphs have been studied. This is natural, since the same magic constant has to be achieved both at vertices of high degree as well as at vertices of low degree, while the labels are distinct consecutive integers.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 4; 1041-1050
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
b-Coloring of the Mycielskian of Some Classes of Graphs
Autorzy:
Raj, S. Francis
Gokulnath, M.
Powiązania:
https://bibliotekanauki.pl/articles/32361730.pdf
Data publikacji:
2022-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
b-coloring
b-chromatic number
Mycielskian of graphs
regular graphs
Opis:
The b-chromatic number b(G) of a graph G is the maximum k for which G has a proper vertex coloring using k colors such that each color class contains at least one vertex adjacent to a vertex of every other color class. In this paper, we have mainly investigated on the b-chromatic number of the Mycielskian of regular graphs. In particular, we have obtained the exact value of the b-chromatic number of the Mycielskian of some classes of graphs. This includes a few families of regular graphs, graphs with b(G) = 2 and split graphs. In addition, we have found bounds for the b-chromatic number of the Mycielskian of some more families of regular graphs in terms of the bchromatic number of their original graphs. Also we have found b-chromatic number of the generalized Mycielskian of some regular graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2022, 42, 2; 363-381
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies