Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "regresja składowych głównych" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Wielocechowa analiza wyników doświadczeń wstępnych z żytem ozimym
Multivariate analysis of data from preliminary trials with winter rye
Autorzy:
Ukalski, Krzysztof
Śmiałowski, Tadeusz
Powiązania:
https://bibliotekanauki.pl/articles/2198126.pdf
Data publikacji:
2011-09-30
Wydawca:
Instytut Hodowli i Aklimatyzacji Roślin
Tematy:
analiza składowych głównych
formy mieszańcowe
formy populacyjne
plon ziarna
regresja składowych głównych
transformacja
żyto ozime
grain yield
hybrid forms
population forms
principal component analysis
principal component regression
transformation
winter rye
Opis:
Przedmiotem badań było 30 form żyta ozimego badanych w doświadczeniach wstępnych przez sześć Zakładów Hodowli Roślin oraz Zakład Roślin Zbożowych IHAR w Krakowie. Wyniki prezentowane w pracy dotyczą obiektów badanych w 2009 r. w 6 miejscowościach. Pod uwagę wzięto 10 cech: plon, MTZ, wysokość, odporność na wyleganie, przezimowanie, liczba dni do kłoszenia, liczba dni do dojrzałości, pylenie, odporność na mączniaka i rdzę brunatną. Celem pracy było: 1. zastosowanie analizy składowych głównych (PCA) na wartościach transformowanych dla cech wyrażonych w skali bonitacyjnej, 2. szczegółowe porównanie badanych form żyta przy użyciu regresji składowych głównych (PCR). Analiza składowych głównych PCA na wartościach poddanych transformacji wyjaśniła ponad 15% więcej zmienności całkowitej niż PCA na wartościach nietransformowanych dla trzech pierwszych składowych. Wyniki analizy PCR przedstawiono za pomocą wykresów przedstawiających zróżnicowanie badanych form żyta ozimego pod kątem wybranej cechy. Forma populacyjna HRSM 4 swoimi właściwościami zbliżona jest do form mieszańcowych.
The subjects of the study were 30 lines of winter rye examined in preliminary trials coordinated by the Plant Breeding and Acclimatization Institute, the Department of Cereals Crops in Cracow. The results presented in the paper concern objects examined in 6 locations in 2009. Ten traits were taken into account: grain yield, 1000 grains weight, plant height, lodging score, winter hardiness, no. of days to heading, no. of days to maturity, pollen fertility, powdery mildew score and brown rust score. The aim of the study was: firstly, the application of principal component analysis (PCA) on transformed values for traits formulated in valuation scale, secondly, detailed comparison of examined forms of winter rye using principal component regression (PCR). Principal component analysis PCA on values under transformation explained over 15% more total variation than PCA on non-transformed values for three first components. The results of PCR analysis are shown on graphs presenting diversity of examined forms of winter rye with consideration of particular traits. The population form HRSM 4 is similar, by its characteristics, to the hybrid lines.
Źródło:
Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin; 2011, 260/261; 251-262
0373-7837
2657-8913
Pojawia się w:
Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Land clayey deposits compressibility investigation using principal component analysis and multiple regression tools
Autorzy:
Berrah, Yacine
Chegrouche, Aymen
Brahmi, Serhane
Boumezbeur, Abderrahmane
Powiązania:
https://bibliotekanauki.pl/articles/2201674.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie
Tematy:
compressibility index
geotechnical parameters
principal component analysis
PCA
multiple regression models
indeks ściśliwości
parametry geotechniczne
analiza głównych składowych
regresja wielokrotna
Opis:
The settlement and compressibility magnitude of the major clayey and marly sediments in Tebessa area (N-E of Algeria) depends on several geotechnical parameters such as compression Cc and recompression Cs indices. The aim of this study was to investigate the parameters related to soil compressibility through tools of statistical analysis, which save time in comparison to multiply repeated laboratory tests. The study also adopted the principal component analysis (PCA) method to eliminate a number of uncorrelated variables that have no influence on the compressibility magnitude, or their impact is insignificant. The highest mean correlation coefficients were obtained for different contributing parameters. Multiple regression analysis has been performed to obtain the best fit model of the output Cc parameter taking into account the best correlation by adding parameters as regressors to reach the highest coefficient of regression R2 . The final obtained model of the present case study gives the best fit model with R2 of 0.92 which is a better value compared to different published models in the literature (R2 of 0.7 as maximum). The chosen input parameters using PCA combined with multiple regression analysis allow identifying the most important input parameters that noticeably affect the soil compression index, and provide with the best model for estimating the Cc index.
Źródło:
Geomatics, Landmanagement and Landscape; 2022, 4; 95--107
2300-1496
Pojawia się w:
Geomatics, Landmanagement and Landscape
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Partial least squares method in the analysis of the intensity of damage in prefabricated large-block building structures
Metoda cząstkowych najmniejszych kwadratów w analizie intensywności uszkodzeń budynków wielkoblokowych
Autorzy:
Firek, K.
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/219406.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza składowych głównych
regresja cząstkowych najmniejszych kwadratów
wpływy górnicze
stan techniczny budynków
principal components analysis
partial least squares regression
mining effects
technical condition of building
Opis:
The paper presents the research methodology aimed at determining the building damage intensity index as a linear combination of indices describing the damage to its individual components. The research base comprised 129 building structures erected in the large-block technology. The study compared the results of a standardized approach to data mining - PCA (Principal Components Analysis) with the procedure of the PLSR method (Partial Least Squares Regression). As a result of the analysis, a generalized form of the building damage index was obtained, as a linear combination of the damage to its components.
W referacie przedstawiono metodykę badań, której celem było ustalenie wskaźnika zakresu intensywności uszkodzeń budynku, jako kombinacji liniowej wskaźników opisujących uszkodzenia jego elementów składowych. Bazą do badań było 129 budynków wzniesionych w technologii wielkoblokowej. W badaniach porównano wyniki standardowego podejścia do eksploracji danych PCA (Principal Components Analysis) z procedurą metody PLSR (Partial Least Squares Regression). W wyniku analiz uzyskano uogólnioną postać wskaźnika uszkodzeń budynku jako kombinacji liniowej uszkodzeń elementów składowych.
Źródło:
Archives of Mining Sciences; 2017, 62, 2; 269-277
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Second Wave of the COVID-19 Pandemic in Poland - Characterised Using FDA Methods
Druga fala COVID-19 w Polsce - charakterystyka z zastosowaniem metod FDA
Autorzy:
Hęćka, Patrycja
Powiązania:
https://bibliotekanauki.pl/articles/21375673.pdf
Data publikacji:
2023
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
function-on-function regression
functional data analysis (FDA)
COVID-19
functional principal component analysis
smooth functions
regresja function-on-function
analiza danych funkcjonalnych
analiza głównych składowych funkcjonalnych
funkcje gładkie
Opis:
The aim of this article was to analyse functional data of the number of hospitalised individuals, intensive care patients, positive COVID-19 tests, deaths and convalescents during the second wave of the COVID-19 pandemic in Poland. For this purpose, firstly the author convert data of sixteen voivodeships to smooth functions, and then used the principal component analysis and multiple function-on-function linear regression model to predict the number of hospitalised and intensive care patients due to the COVID-19 infection during the second wave of the pandemic. Finally, the results were compared with those previously obtained for the combined data of the second and third wave of the COVID-19 pandemic in Poland (Hęćka, 2023).
Głównym celem artykułu była analiza danych funkcjonalnych dotyczących liczby pozytywnych wyników testu, zgonów, ozdrowieńców, osób hospitalizowanych oraz w stanie ciężkim podczas drugiej fali pandemii COVID-19 w Polsce. Pierwszym krokiem była konwersja danych w funkcje gładkie. Następnie przedstawiono analizę głównych składowych funkcjonalnych oraz użycie modelu multiple function-on-function linear regression w celu predykcji liczby osób hospitalizowanych oraz będących w stanie ciężkim z powodu COVID-19 w polskich województwach. Otrzymane wyniki porównano z wcześniej uzyskanymi dla połączonych danych z drugiej i trzeciej fali pandemii.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2023, 27, 3; 20-34
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies