Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "reflexive Banach space" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
On a vector-valued local ergodic theorem in $L_∞$
Autorzy:
Sato, Ryotaro
Powiązania:
https://bibliotekanauki.pl/articles/1217311.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
vector-valued local ergodic theorem
reflexive Banach space
d-dimensional semigroup of linear contractions
contraction majorant
Opis:
Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
Źródło:
Studia Mathematica; 1999, 132, 3; 285-298
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Generalized limits and a mean ergodic theorem
Autorzy:
Li, Yuan-Chuan
Shaw, Sen-Yen
Powiązania:
https://bibliotekanauki.pl/articles/1220908.pdf
Data publikacji:
1996
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
Banach limits
$L$-limits
states
numerical radius
reflexive space
mean ergodic theorem
Opis:
For a given linear operator L on $ℓ^∞$ with ∥L∥ = 1 and L(1) = 1, a notion of limit, called the L-limit, is defined for bounded sequences in a normed linear space X. In the case where L is the left shift operator on $ℓ^∞$ and $X = ℓ^∞$, the definition of L-limit reduces to Lorentz's definition of σ-limit, which is described by means of Banach limits on $ℓ^∞$. We discuss some properties of L-limits, characterize reflexive spaces in terms of existence of L-limits of bounded sequences, and formulate a version of the abstract mean ergodic theorem in terms of L-limits. A theorem of Sinclair on the form of linear functionals on a unital normed algebra in terms of states is also generalized.
Źródło:
Studia Mathematica; 1996, 121, 3; 207-219
0039-3223
Pojawia się w:
Studia Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Weak uniform normal structure and iterative fixed points of nonexpansive mappings
Autorzy:
Domínguez Benavides, T.
López Acedo, G.
Xu, Hong
Powiązania:
https://bibliotekanauki.pl/articles/967052.pdf
Data publikacji:
1995
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
nonexpansive mapping
iterative fixed point
geometrical coefficients of Banach spaces
James' quasi-reflexive space
weak uniform normal structure
Opis:
This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with weak uniform normal structure, every nonexpansive self-mapping defined on a weakly sequentially compact convex subset of X admits an iterative fixed point.
Źródło:
Colloquium Mathematicum; 1995, 68, 1; 17-23
0010-1354
Pojawia się w:
Colloquium Mathematicum
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies