- Tytuł:
- On a vector-valued local ergodic theorem in $L_∞$
- Autorzy:
- Sato, Ryotaro
- Powiązania:
- https://bibliotekanauki.pl/articles/1217311.pdf
- Data publikacji:
- 1999
- Wydawca:
- Polska Akademia Nauk. Instytut Matematyczny PAN
- Tematy:
-
vector-valued local ergodic theorem
reflexive Banach space
d-dimensional semigroup of linear contractions
contraction majorant - Opis:
- Let $T = {T(u): u ∈ ℝ_d^{+}}$ be a strongly continuous d-dimensional semigroup of linear contractions on $L_1((Ω,Σ,μ);X)$, where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since $L_1((Ω,Σ,μ);X)* = L_∞((Ω,Σ,μ);X*)$, the adjoint semigroup $T* = {T*(u): u ∈ ℝ_d^{+}}$ becomes a weak*-continuous semigroup of linear contractions acting on $L_∞((Ω,Σ,μ);X*)$. In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), $u ∈ ℝ_d^{+}$, has a contraction majorant P(u) defined on $L_1((Ω,Σ,μ);ℝ)$, that is, P(u) is a positive linear contraction on $L_1((Ω,Σ,μ);ℝ)$ such that $‖T(u)f(ω)‖ ≤ P(u)‖f(·)‖(ω)$ almost everywhere on Ω for every $⨍ ∈ L_1((Ω,Σ,μ);X)$, we prove that the local ergodic theorem holds for T*.
- Źródło:
-
Studia Mathematica; 1999, 132, 3; 285-298
0039-3223 - Pojawia się w:
- Studia Mathematica
- Dostawca treści:
- Biblioteka Nauki