- Tytuł:
- Long wavelength type-II superlattice barrier infrared detector for CubeSat hyperspectral thermal imager
- Autorzy:
-
Rafol, Sir B.
Gunapala, Sarath D.
Ting, David Z.
Soibel, Alexander
Khoshakhlagh, Arezou
Keo, Sam A.
Pepper, Brian J.
Hill, Cory J.
Maruyama, Yuki
Fisher, Anita M.
Sood, Ashok
Zeller, John
Wright, Robert
Lucey, Paul
Nunes, Miguel
Flynn, Luke
Babu, Sachidananda
Ghuman, Parminder - Powiązania:
- https://bibliotekanauki.pl/articles/2204204.pdf
- Data publikacji:
- 2023
- Wydawca:
- Polska Akademia Nauk. Stowarzyszenie Elektryków Polskich
- Tematy:
-
type-II superlattice
focal plane array
infrared detector
quantum efficiency
noise equivalent difference temperature
dark current density
anti-reflective coating - Opis:
- The hyperspectral thermal imaging instrument for technology demonstration funded by NASA’s Earth Science Technology Office under the In-Space Validation of Earth Science Technologies program requires focal plane array with reasonably good performance at a low cost. The instrument is designed to fit in a 6U CubeSat platform for a low-Earth orbit. It will collect data on hydrological parameters and Earth surface temperature for agricultural remote sensing. The long wavelength infrared type-II strain layer superlattices barrier infrared detector focal plane array is chosen for this mission. With the driving requirement dictated by the power consumption of the cryocooler and signal-noise-ratio, cut-off wavelengths and dark current are utilized to model instrument operating temperature. Many focal plane arrays are fabricated and characterised, and the best performing focal plane array that fulfils the requirements is selected. The spectral band, dark current and 8-9.4 μm pass band quantum efficiency of the candidate focal plane array are: 8-10.7 μm, 2.1∙10ˉ⁵ A/cm², and 47%, respectively. The corresponding noise equivalent difference temperature and operability are 30 mK and 99.7%, respectively. Anti-reflective coating is deposited on the focal plane array surface to enhance the quantum efficiency and to reduce the interference pattern due to an absorption layer parallel surfaces cladding material.
- Źródło:
-
Opto-Electronics Review; 2023, 31, Special Issue; art. no. e144569
1230-3402 - Pojawia się w:
- Opto-Electronics Review
- Dostawca treści:
- Biblioteka Nauki