Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "reaction-diffusion equations" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Behaviour of global solutions for a system of reaction-diffusion equations from combustion theory
Autorzy:
Badraoui, Salah
Powiązania:
https://bibliotekanauki.pl/articles/1338841.pdf
Data publikacji:
1999
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
global existence
boundedness
reaction-diffusion equations
large time behaviour
Opis:
We are concerned with the boundedness and large time behaviour of the solution for a system of reaction-diffusion equations modelling complex consecutive reactions on a bounded domain under homogeneous Neumann boundary conditions. Using the techniques of E. Conway, D. Hoff and J. Smoller [3] we also show that the bounded solution converges to a constant function as t → ∞. Finally, we investigate the rate of this convergence.
Źródło:
Applicationes Mathematicae; 1999, 26, 2; 133-150
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling ductile damage of steel in aggressive environment
Autorzy:
Kucharski, R.
Powiązania:
https://bibliotekanauki.pl/articles/1933197.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
stress corrosion damage
reaction-diffusion equations
damage evolution equation
FEM
Opis:
This paper is a proposition of a new damage model, extended to include the influence of the external environment, based on the Gurson yield function and a new damage evolution equation. The model also contains a mass transport equation based on Pick's law. A comparison of experimental and numerical results is included.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 4; 417-425
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study of ODE limit problems for reaction-diffusion equations
Autorzy:
Simsen, J.
Simsen, M. S.
Zimmermann, A.
Powiązania:
https://bibliotekanauki.pl/articles/1397881.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
ODE limit problems
shadow systems
reaction-diffusion equations
parabolic problems
variable exponents
attractors
upper semicontinuity
Opis:
In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in $L^\infty(\Omega)$ and the diffusion coefficients go to infinity.
Źródło:
Opuscula Mathematica; 2018, 38, 1; 117-131
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monotone iterative methods for infinite systems of reaction-diffusion-convection equations with functional dependence
Autorzy:
Brzychczy, S.
Powiązania:
https://bibliotekanauki.pl/articles/255097.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
infinite systems
reaction-diffusion-convection equations
semilinear parabolic differential-functional equations
Volterra functionals
monotone iterative methods
method of upper and lower solutions
Opis:
We consider the Fourier first initial-boundary value problem for an infinite system of semilinear parabolic differential-functional equations of reaction-diffusion-convection type of the form [formula] where [formula] in a bounded cylindrical domain (0, T] x G := D rcup Rm+1. The right-hand sides of the system are Volterra type functionals of the unknown function z. In the paper, we give methods of the construction of the monotone iterative sequences converging to the unique classical solution of the problem considered in partially ordered Banach spaces with various convergence rates of iterations. We also give remarks on monotone iterative methods in connection with numerical methods, remarks on methods for the construction of lower and upper solutions and remarks concerning the possibility of extending these methods to more general parabolic equations. All monotone iterative methods are based on differential inequalities and, in this paper, we use the theorem on weak partial differential-functional inequalities for infinite systems of parabolic equations, the comparison theorem and the maximum principle. A part of the paper is based on the results of our previous papers. These results generalize the results obtained by several authors in numerous papers for finite systems of semilinear parabolic differential equations to encompass the case of infinite systems of semilinear parabolic differential-functional equations. The monotone iterative schemes can be used for the computation of numerical solutions.
Źródło:
Opuscula Mathematica; 2005, 25, 1; 29-99
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Traveling waves in media with diffusion
Autorzy:
Kaźmierczak, Bogdan
Powiązania:
https://bibliotekanauki.pl/articles/747755.pdf
Data publikacji:
2005
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Reaction-diffusion equations, Boundary value problems for parabolic systems,Index theory, Morse-Conley indices, Homoclinic and heteroclinic orbits, Ionized gas flow in electromagnetic fields
plasmic flow, Physiological flow
Opis:
In this paper, we discuss traveling wave solutions for equations that model nonlinear media with diffusion. Such solutions can also describe, for example, the propagation of heteroclinic fronts or impulses (medium excitations). We present several examples of processes in which the notion of a traveling wave captures the essence of the analytical phenomena, including plasma sustained by a laser beam, phase transitions in van der Waals fluids, skin morphogenesis, and the DNA-RNA transcription process.
Źródło:
Mathematica Applicanda; 2005, 33, 47/06
1730-2668
2299-4009
Pojawia się w:
Mathematica Applicanda
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies