Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "radio k-coloring" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Radio k-colorings of paths
Autorzy:
Chartrand, Gary
Nebeský, Ladislav
Zhang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/743194.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
radio k-coloring
radio k-chromatic number
Opis:
For a connected graph G of diameter d and an integer k with 1 ≤ k ≤ d, a radio k-coloring of G is an assignment c of colors (positive integers) to the vertices of G such that
d(u,v) + |c(u)- c(v)| ≥ 1 + k
for every two distinct vertices u and v of G, where d(u,v) is the distance between u and v. The value rcₖ(c) of a radio k-coloring c of G is the maximum color assigned to a vertex of G. The radio k-chromatic number rcₖ(G) of G is the minimum value of rcₖ(c) taken over all radio k-colorings c of G. In this paper, radio k-colorings of paths are studied. For the path Pₙ of order n ≥ 9 and n odd, a new improved bound for $rc_{n- 2}(Pₙ)$ is presented. For n ≥ 4, it is shown that
$rc_{n-3}(Pₙ) ≤ \binom{n-2} {2}$
Upper and lower bounds are also presented for rcₖ(Pₙ) in terms of k when 1 ≤ k ≤ n- 1. The upper bound is shown to be sharp when 1 ≤ k ≤ 4 and n is sufficiently large.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 1; 5-21
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Triameter of Graphs
Autorzy:
Das, Angsuman
Powiązania:
https://bibliotekanauki.pl/articles/32083897.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
distance
radio k -coloring
Nordhaus-Gaddum bounds
Opis:
In this paper, we study a new distance parameter triameter of a connected graph G, which is defined as max{d(u; v)+d(v;w)+d(u;w) : u; v;w ∈ V} and is denoted by tr(G). We find various upper and lower bounds on tr(G) in terms of order, girth, domination parameters etc., and characterize the graphs attaining those bounds. In the process, we provide some lower bounds of (connected, total) domination numbers of a connected graph in terms of its triameter. The lower bound on total domination number was proved earlier by Henning and Yeo. We provide a shorter proof of that. Moreover, we prove Nordhaus-Gaddum type bounds on tr(G) and find tr(G) for some specific family of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 601-616
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies