Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "radial neural networks" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Budowa numerycznego modelu rzeźby terenu toru wodnego metodą opartą na przekrojach
The Construction of a Numerical Terrain Relief Model of a Fairway by the Cross-Sections Method
Autorzy:
Stateczny, A.
Kozak, M.
Powiązania:
https://bibliotekanauki.pl/articles/360648.pdf
Data publikacji:
2006
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
numeryczny model rzeźby terenu
radialne sieci neuronowe
modelowanie dna
EXPLO-SHIP 2006
Numerical Terrain Relief Model
radial neural networks
bottom modeling
Opis:
Artykuł przedstawia metodę budowy numerycznego modelu rzeźby terenu proponowaną dla torów wodnych. Metoda oparta jest na przekrojach aproksymowanych z wykorzystaniem sieci radialnych (RBF), z przyrostowym doborem liczby neuronów radialnych. Przekroje adaptacyjnie dopasowują się do modelowanej powierzchni oraz założonego przez użytkownika błędu, co zapewnia redukcję danych i możliwość wizualizacji powierzchni w czasie rzeczywistym. Do badań wykorzystano powierzchnie testowe oraz rzeczywiste punkty pomiarowe z toru wodnego Szczecin - Świnoujście.
A method of constructing a Numerical Terrain Relief Model dedicated to fairways is presented. The method is based on approximated cross-sections using RBF networks with an incremental selection of radial neurons number. Adaptive cross-sections adjust to the model surface and to an error assumed by the user, which reduces the amount of data and makes it possible to visualize the surface in real time. The research made use of test surfaces as well as real measurement points located in the Szczecin - Świnoujście fairway.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2006, 11 (83); 269-277
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lan interconnection unit based on an artificial neural network
Autorzy:
Jalab, Hamid A.
Powiązania:
https://bibliotekanauki.pl/articles/1955324.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
LAN bridge
neural networks
radial basis function (RBF)
Opis:
This paper presents the design of an intelligent interconnection unit based on an artificial neural network (ANN), used when two local area networks (LAN) with different IEEE 802 standard protocols are connected. The proposed ANN is used to activate execution of suitable procedures bridging 802.X LAN and 802.Y LAN.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 3; 339-346
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Potencjał rynkowy remontów energooszczędnych w budownictwie mieszkaniowym Zielonej Góry
Market potential for energy efficient renovations in housing of Zielona Góra
Autorzy:
Skiba, M.
Mrówczyńska, M.
Bazan-Krzywoszańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/402791.pdf
Data publikacji:
2016
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
miejska polityka energetyczna
polityka przestrzenna
wzrost efektywności energetycznej w budownictwie mieszkaniowym
sieci neuronowe radialne
municipal energy policy
spatial policy
increase energy efficiency in housing
neural networks radial
Opis:
W artykule przedstawiono analizę potencjalnych oszczędności energii dla remontów energooszczędnych w budownictwie mieszkaniowym w Zielonej Górze. Potencjał został określony na podstawie technologii i roku wykonania budynków, formy zabudowy i przeważającego sposobu zasilania w ciepło i energię elektryczną. Obliczony potencjał został przedstawiony jako wartość koniecznych nakładów dla zmniejszenia zużycia energii o 1 kWh/m2.
The paper presents an analysis of conditional energy savings for energy-efficient renovation of housing in Zielona Góra. The potential was determined on the basis of technology and a year of the construction of buildings, kind of buildings and dominating way of heat and power supply. The calculated potential was presented as the value of the necessary investments to reduce energy consumption by 1 kWh/m2.
Źródło:
Budownictwo i Inżynieria Środowiska; 2016, 7, 2; 111-117
2081-3279
Pojawia się w:
Budownictwo i Inżynieria Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vehicles Classification Using the HRBF Neural Network
Klasyfikacja pojazdów z wykorzystaniem sieci neuronowej HRBF
Autorzy:
Wantoch-Rekowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/305921.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci neuronowe
klasyfikacja sieci
zbiór uczący
Hyper Radial Basis Function network HRBF
neural networks
networks classification
learning set
HRBF
Opis:
The paper presents the problem of using a neural network for military vehicle classification on the basis of ground vibration. One of the main elements of the system is a unit called the geophone. This unit allows to measure the amplitude of ground vibration in each direction for a certain period of time. The value of the amplitude is used to fix the characteristic frequencies of each vehicle. If we want to fix the main frequency it is necessary to use the Fourier transform. In this case the fast Fourier transform FFT was used. Since the neural network (Hyper Radial Basis Function network) was used, a learning set has to be prepared. Please find the attached results of using the HRBF neural network, which include: examples of learning, validation and test sets, the structure of the networks and the learning algorithm, learning and testing results.
W opracowaniu przedstawiono zagadnienie wykorzystania sieci neuronowej do klasyfikacji określonych typów pojazdów na podstawie analizy amplitudy drgań gruntu. Jednym z elementów systemu do pomiaru amplitudy drgań gruntu jest geofon. Umożliwia on pomiar amplitudy drgań gruntu w wybranym kierunku dla określonego przedziału czasu. Wartość wyznaczonej amplitudy wykorzystywana jest do wyznaczenia charakterystycznych częstotliwości drgań dla poszczególnych pojazdów. Do wyznaczenia charakterystycznych częstotliwości wykorzystywana jest transformata Fouriera FFT. Do klasyfikacji wykorzystana została sieć neuronowa z radialną funkcją aktywacji, dlatego też wymagane jest przygotowanie odpowiedniego zbioru uczącego. W opracowaniu przedstawiono wyniki użycia sieci HRBF. Przedstawiono strukturę oraz zawartość zbioru uczącego.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2011, 7; 47-52
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe o radialnych funkcjach bazowych do śledzenia obiektów w obrazach wideo
Artificial neural networks with radial basis functions for video object tracking
Autorzy:
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/305873.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
śledzenie obiektów
sztuczne sieci neuronowe
radialne funkcje bazowe
object tracking
artificial neural networks
radial basis functions
Opis:
W pracy przedstawiono opis sztucznej sieci neuronowej do lokalizacji i śledzenia obiektu w obrazach wideo z wykorzystaniem środowiska MATLAB oraz wyniki badań odporności algorytmu na mogące wystąpić zakłócenia. W artykule zaprezentowana została architektura sztucznej sieci neuronowej o radialnych funkcjach bazowych. Pokazany został zarówno algorytm śledzenia celu z wykorzystaniem powyższej architektury sieci, jak i metoda modelowania oraz lokalizacji celu. W podsumowaniu przedstawione zostały wyniki przeprowadzonych symulacji algorytmów śledzących opartych na sztucznych sieciach neuronowych.
The main problem considered in this article was the artificial neural network design for target localization and target tracking in video sequence, with the use of Matlab environment. What is more, the algorithm resistance to noise and disturbances that may occur was studied. The article presents the architecture of artificial neural network with radial basis functions. The algorithm for tracking as well as the method for target modeling and localization with the use of the above network architecture is shown. In the summary there are results of conducted simulations in Matlab of video trackers based on artificial neural networks.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2013, 11; 33-39
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face Recognition Using Canonical Correlation, Discrimination Power, and Fractional Multiple Exemplar Discriminant Analyses
Autorzy:
Hajiarbabi, M.
Agah, A.
Powiązania:
https://bibliotekanauki.pl/articles/384779.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
face recognition
Canonical Correlation Analysis
Discrimination Power Analysis
Multiple Exemplar Discriminant Analysis
Radial Basis Function neural
networks
Opis:
Face recognition is a biometric identification method which compared to other methods, such as finger print identification, speech, signature, hand written and iris recognition is shown to be more noteworthy both theoretically and practically. Biometric identification methods have various applications such as in film processing, control access networks, among many. The automatic recognition of a human face has become an important problem in pattern recognition, due to (1) the structural similarity of human faces, and (2) great impact of factors such as illumination conditions, facial expression and face orientation. These have made face recognition one of the most challenging problems in pattern recognition. Appearance-based methods are one of the most common methods in face recognition, which can be categorized into linear and nonlinear methods. In this paper face recognition using Canonical Correlation Analysis is introduced, along with the review of the linear and nonlinear appearance-based methods. Canonical Correla- tion Analysis finds the linear combinations between two sets of variables which have maximum correlation with one another. Discriminant Power analysis and Fractional Multiple Discriminant Analysis has been used to extract features from the image. The results provided in this paper show the advantage of this method compared to other methods in this field.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2015, 9, 4; 18-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lokalizacja punktów pomiarowych w systemie do trójwymiarowego pozycjonowania ciała wybranymi metodami sztucznej inteligencji
Detection of measurement points in a 3D body positioning system by means of artificial intelligence
Autorzy:
Czechowicz, A.
Tokarczyk, R.
Powiązania:
https://bibliotekanauki.pl/articles/131086.pdf
Data publikacji:
2009
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
fotogrametria
pozycjonowanie ciała
sieci neuronowe
perceptron wielowarstwowy
wsteczna propagacja błędów
sieci z radialnymi funkcjami bazowymi
photogrammetry
body positioning
neural networks
multi-layer perceptron
error back-propagation
radial basis function networks
Opis:
Fotogrametryczny system cyfrowy do pomiaru ciała ludzkiego dla celów badania wad postawy służy do wyznaczania przestrzennego położenia wybranych jego punktów. Wymaga on pomierzenia na zdjęciach cyfrowych trzech grup punktów, zwanych w tytule referatu punktami pomiarowymi: fotopunktów, markerów sygnalizowanych na pacjencie oraz źrenic oczu. Fotopunkty to czarno-białe sygnały pozwalające na orientację w przestrzeni modelu utworzonego ze zdjęć. Markery to styropianowe kulki o średnicy 4÷5 mm sygnalizujące wybrane elementy kośćca umieszczone na powierzchni ciała. Artykuł dotyczy wykorzystania sieci neuronowych do lokalizacji fotopunktów i styropianowych markerów. Zadaniem sieci jest klasyfikacja kolejnych fragmentów obrazu na zawierające obraz fotopunktu, markera lub niezawierające obrazu żadnego z nich. W ramach badań sprawdzono możliwość przeprowadzenia zdefiniowanej powyżej klasyfikacji sieciami o architekturze wielowarstwowego perceptronu (ang. Multi Layer Perceptron –MLP) ze wsteczną propagacją błędu oraz sieciami z radialnymi funkcjami bazowymi RBF (ang. Radial Basis Function Networks). Zweryfikowano przydatność reprezentacji opartej na informacji o rozkładzie wartości gradientu oraz jego kierunku dla celów wykrycia punktów pomiarowych. Wspomniana reprezentacja wywodzi się z badań nad selekcją podobrazów dla potrzeb dopasowania zdjęć lotniczych.
A digital photogrammetric system for making measurements of the human body for the purpose of studying faulty posture is designed to determine the three-dimensional location of selected points in the human body. It requires the measurement of three groups of points on digital images, points referred to in this paper’s title as measurement points, i.e. control points, markers indicated on the patient’s body and pupils of the eyes. Control points are black and white signals permitting the correct orientation in space of a model created from the images. The markers are balls of polystyrene foam of 4-5 mm diameter, placed on the body, which indicate selected elements of the human skeleton. This paper describes the utilisation of neural networks to locate control points and markers. The aim of the networks is to classify consecutive fragments of an image as containing control points, containing markers or not containing any of these features. The research covered evaluation of the possibility of conducting this classification using Multi Layer Perceptron Networks with back propagation of errors as well as with Radial Basis Function Networks. The usefulness of a representation based on information about the distribution of gradient value and direction for the purpose of the detection of measurement points has been verified. This representation comes from earlier research on the selection of subimages for the purpose of matching the aerial pictures.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2009, 20; 67-79
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech nonfluency detection and classification based on linear prediction coefficients and neural networks
Autorzy:
Kobus, A.
Kuniszyk-Jóźkowiak, W.
Smołka, E.
Codello, I.
Powiązania:
https://bibliotekanauki.pl/articles/333600.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
przewidywanie liniowe
liniowe kodowanie predykcyjne
sieci nuronowe
kowariancja
brak płynności
mowa
wykrywanie
perceptron
linear prediction
LPC
neural networks
Kohonen
covariance
nonfluency
speech
detection
radial
Opis:
The goal of the paper is to present a speech nonfluency detection method based on linear prediction coefficients obtained by using the covariance method. The application “Dabar” was created for research. It implements three different methods of LP with the ability to send coefficients computed by them into the input of Kohonen networks. Neural networks were used to classify utterances in categories of fluent and nonfluent. The first one was Kohonen network (SOM), used to reduce LP coefficients representation of each window, which were used as input data to SOM input layer, to a vector of winning neurons of SOM output layer. Radial Basis Function (RBF) networks, linear networks and Multi-Layer Perceptrons were used as classifiers. The research was based on 55 fluent samples and 54 samples with blockades on plosives (p, b, d, t, k, g). The examination was finished with the outcome of 76% classifying.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 135-143
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
Autorzy:
Ahmida, Z.
Charef, A.
Becerra, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/908523.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system nieliniowy
sterowanie optymalne
radialna funkcja bazowa
sieć neuronowa
regulacja predykcyjna
sterowanie wyprzedzające
nonlinear systems
optimal control
radial basis functions
neural networks
predictive control
feedforward control
Opis:
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 3; 369-381
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies