Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "równanie różniczkowe stochastyczne" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Cellular Automata and Many-Particle Systems Modeling Aggregation Behavior Among Populations
Autorzy:
Morale, D.
Powiązania:
https://bibliotekanauki.pl/articles/929762.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
równanie różniczkowe stochastyczne
równanie różniczkowo-całkowe
cellular automata
individual-based models
stochastic differential equations
law of large numbers
density dependence
nonlinear integrodifferential equations
Opis:
A cellular automaton model is presented in order to describe mutual interactions among the individuals of a population due to social decisions.The scheme is used for getting qualitative results, comparable to field experiments carried out on a population of ants which present an aggregative behavior. We also present a second description of a biological spatially structured population of N individuals by a system of stochastic differential equations of Ito type. A 'law of large numbers' to a continuum dynamics described by an integro-differential equation is given.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 1; 157-173
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear filtering for Markov systems with delayed observations
Autorzy:
Calzolari, A.
Florchinger, P.
Nappo, G.
Powiązania:
https://bibliotekanauki.pl/articles/907856.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
filtracja nieliniowa
proces dyfuzji
procesy Markova
stochastyczne równanie różniczkowe
nonlinear filtering
jump processes
diffusion processes
Markov processes
stochastic delay differential equation
Opis:
This paper deals with nonlinear filtering problems with delays, i.e., we consider a system (X,Y ), which can be represented by means of a system [...], in the sense that [...], where a(t) is a delayed time transformation. We start with X being a Markov process, and then study Markovian systems, not necessarily diffusive, with correlated noises. The interest is focused on the existence of explicit representations of the corresponding filters as functionals depending on the observed trajectory. Various assumptions on the function a(t) are considered.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2009, 19, 1; 49-57
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stochastic models of the slow/fast type of atrioventricular nodal reentrant tachycardia and tachycardia with conduction aberration
Autorzy:
Jackowska-Zduniak, Beata
Powiązania:
https://bibliotekanauki.pl/articles/2172115.pdf
Data publikacji:
2022
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
mathematical model
stochastic differential equations
action potential
atrioventricular nodal reentrant tachycardia
conduction aberration
model matematyczny
stochastyczne równanie różniczkowe
potencjał czynnościowy
częstoskurcz komorowy
aberracja przewodzenia
Opis:
Models are proposed to describe the heart’s action potential. A system of stochastic differential equations is used to recreate pathological behaviour in the heart such as atrioventricular nodal reentrant tachycardia (AVNRT) and also AVNRT with conduction aberration. Part of the population has abnormal accessory pathways: fast and slow. An additional pathway is not always induced, since the deterministic model is not proper due to a stochasticity in this process. Introduction of a stochastic term allows modelling a pre-excitation perturbation (such as unexpected excitation by premature contractions in atrium (PAC)) which triggers the mechanism of AVNRT. Also, a system of AVNRT with additional conduction aberration, which is a rare type of arrhythmia, is considered. The aim of this work is to propose a mathematical model superior to the deterministic one that recreates this disease better and allows understanding its mechanism and physical dependencies, which may help to propose a new therapy of AVNRT. Results are illustrated with numerical solutions.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2022, 32, 3; 429--440
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A dynamic bi-orthogonal field equation approach to efficient Bayesian inversion
Autorzy:
Tagade, P. M.
Choi, H. L.
Powiązania:
https://bibliotekanauki.pl/articles/330516.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
Bayesian framework
stochastic partial differential equation
Karhunen–Loève expansion
generalized polynomial chaos
dynamically biorthogonal field equations
ramy Bayesa
stochastyczne równanie różniczkowe
przekształcenie Karhunena-Loeve'a
chaos wielomianowy
Opis:
This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen–Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE) that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs) define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 2; 229-243
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies