Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pyrite flotation" wg kryterium: Temat


Tytuł:
New insights into pyrite-hydrogen peroxide interactions during froth flotation: experimental and DFT study
Autorzy:
Cao, Qinbo
Yan, Wenchao
Wen, Shuming
Liu, Dianwen
Li, Yanjun
Powiązania:
https://bibliotekanauki.pl/articles/2200334.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
hydrogen peroxide
oxidization
pyrite flotation
adsorption models
DFT
Opis:
Hydrogen peroxide (H2O2) is an efficient depressant for pyrite (FeS2) flotation. However, the depressing mechanism of H2O2 is not fully understood. In this paper, the depressing capacity of H2O2 for pyrite was examined by flotation tests. Results revealed that pyrite flotation could be inhibited by H2O2 at pH 6.4. The pyrite powder in H2O2 solution enhanced the release of O2 from H2O2. However, the O2 concentration in the solution was less than that of H2O2; thus, H2O2 is the major oxidant in the solution. Moreover, density functional theory calculations were performed to study the interactions between H2O2 and hydrated pyrite (100) surface. The H2O2 molecule tended to react with the pyrite surface to generate one S=O bond and an H2O molecule. The possible binding models of O2 molecules on the pyrite (100) surface were also studied for comparison. The O2 dissociation on the pyrite surface was more favorable than the adsorption of O2 as a whole. In addition, the orbital interaction in the S=O bond raised from the reaction of H2O2/O2 with the pyrite surface was also investigated by the density states analysis. These results provide some insights into the oxidizing effect of H2O2 in pyrite flotation.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 1; art. no. 157409
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of anionic, cationic and amphoteric collectors used in pyrite flotation
Autorzy:
Bulut, Gülay
Sirkeci, A. A.
Arı, Beril
Powiązania:
https://bibliotekanauki.pl/articles/1446764.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
pyrite
amine
collectors
xanthate
Opis:
In this study, flotation tests were conducted with purified pyrite and ore samples. The collectors employed were anionic and cationic type such as potassium ethlyl-amyl xanthate, Tomamine M73 and Resanol Bal. According to the flotation tests, it was found that pyrite floated at low pH and depressed at high pH values with xanthates. On the other hand, in the case of cationic collectors which are Tomamine M73 (alkyl ether amine, an amphoteric surfactant) and Resanol Bal (N-3-tridecyloxy propyl 1-3 diamine, branched acetate) pyrite floated at high pH values. It was shown that amine type collectors could be efficient to selectively float pyrite from chalcopyrite at alkali pH ranges in the case of ore samples.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 5; 15-22
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pyrite flotation in the presence of galena. Study on galvanic interaction
Autorzy:
Allahkarami, E.
Poor, A. Z.
Rezai, B.
Powiązania:
https://bibliotekanauki.pl/articles/110735.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
galena
pyrite
galvanic interactions
Opis:
In this investigation, galvanic interaction between galena and pyrite in flotation and its effect on floatability of pyrite were studied. Rest and mixed potential studies in the presence and absence of a collector indicated that pyrite was nobler than galena under all investigated conditions. Therefore, pyrite served as a cathode in galvanic interactions with galena. Floatability of pyrite was performed alone and as a mixture with galena in the ratios of pyrite to galena equal to 1:4, 1:1 and 4:1. The experiments were conducted with air and nitrogen. In any galvanic contact between pyrite and galena, anodic oxidation occurred on the galena surface, and hydrolysed lead species adsorbed on the pyrite surface. The investigation of the various reactions occurring on the sample surface was investigated by ethylene diamine-tetra acetic acid disodium salt (EDTA) extraction and X-ray photoelectron spectroscopy (XPS) measurements. In the presence of nitrogen, floatability of pyrite increased. The recovery of pyrite in the presence of air was 22%, while in the mixture with galena (ratio 1:4) the recovery increased to 43%. The results indicated that the presence of galena improved floatability of pyrite.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 846-858
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation kinetics and thermodynamic behavior of chalcopyrite and pyrite in high alkaline systems
Autorzy:
Yan, H.
Yuan, Q.
Zhou, L.
Qiu, T.
Ai, G.
Powiązania:
https://bibliotekanauki.pl/articles/110078.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation kinetics
pyrite
chalcopyrite
flotation separation
high alkaline
microcalorimetry
Opis:
The monomineral flotation test and microcalorimetry were used to study the flotation kinetics and thermodynamic behavior of chalcopyrite and pyrite in high alkaline systems of lime and NaOH. The results showed that in these systems there were less hydrophilic substances on the chalcopyrite surface, so that the apparent activation energy of sodium butyl xanthate (SBX) adsorption on chalcopyrite surface was low. This promoted the adsorption of SBX and increased the flotation rate and recovery of chalcopyrite. In contrast, the hydrophilic Fe(OH)3 and SO42- formed by oxidation on the pyrite surface increased the adsorption activation energy of SBX. Thus, the flotation rate and recovery of pyrite were lower. Moreover, in the lime high alkaline system, the hydrophilic calcium film generated on the pyrite surface further hindered the adsorption of SBX, thereby further inhibiting pyrite in this environment. In other words, the lime high alkaline environment increased the apparent activation energy difference of SBX adsorption between chalcopyrite and pyrite compared to the NaOH system, facilitating the flotation separation of chalcopyrite and pyrite. The results can help with the theoretical research of flotation separation of other minerals, and provide guidance for developing low alkaline and lime-free pyrite depressants.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 901-910
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Investigating the selectivity of calcium hypochlorite for flotation separation of chalcopyrite and pyrite pre-adsorbed collector
Autorzy:
Yang, Wenhui
Qiu, Xianhui
Yan, Huashan
Wu, Hao
Yang, Liu
Lai, Ruisen
Qiu, Tingsheng
Powiązania:
https://bibliotekanauki.pl/articles/2146919.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
chalcopyrite
calcium hypochlorite
flotation separation
Opis:
Bulk flotation is usually used in the flotation of Cu-Fe sulfide ore, and the subsequent concentrate is difficult to be separated because the minerals have adsorbed the collector. In this paper, flotation tests showed that calcium hypochlorite (Ca(ClO)2) had a stronger depression effect on pyrite pre-adsorbed sodium butyl xanthate (SBX), while having a negligible depressive effect on chalcopyrite. A copper concentrate with Cu grade of 33.32% and Cu recovery of 94.47% could be obtained from flotation tests of mixed minerals. The depression performance and mechanism of Ca(ClO)2 were studied by contact angle measurements, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses, the results suggested that Ca(ClO)2 can decomposes SBX on the pyrite surface and oxidizes the mineral surface to form hydrophilic substances, which enhances the hydrophilicity of the pyrite surface. In contrast, Ca(ClO)2 has little effect on chalcopyrite pre-adsorbed SBX, the possible depression model is discussed.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 4; art. no. 150703
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Physico-chemical factors in flotation of Cu-Mo-Fe ores with seawater: a critical review
Autorzy:
Castro, S.
Powiązania:
https://bibliotekanauki.pl/articles/109447.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
chalcopyrite
molybdenite
Seawater flotation
Metabisulfite
Opis:
This paper aims to provide a comprehensive review on the physico-chemical factors governing the flotation of Cu-Mo-Fe sulfide ores in seawater, which is different from NaCl or KCl solutions because it contains hydrolysable ions such as Mg2+, Ca2+, HCO3-, CO32-, etc., which can precipitate with lime as hydroxides, Ca, and Mg insoluble salts. Under pH 9.0 Mg2+ ions do not depress molybdenite. However, over the critical pH of precipitation of Mg(OH)2 (pH>10.0), molybdenite is strongly depressed in seawater. This detrimental effect on molybdenite discards the use of lime to depress pyrite in Cu-Mo-Fe ores floated in seawater. In plant practice, the use of sodium metabisulfite (MBS) has replaced lime as a pyrite depressant. It works at pH 6.5-7.0 where the natural floatability of molybdenite is enhanced. Consequently, pH control in rougher and cleaning circuits, and the use of MBS to depress pyrite, have allowed the successful use of non-desalinated seawater in flotation of Cu-Mo-Fe sulfide ores at industrial scale.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1223-1236
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A study on the effect of active pyrite on flotation of porphyry copper ores
Autorzy:
Molaei, N.
Hoseinian, F. S.
Rezai, B.
Powiązania:
https://bibliotekanauki.pl/articles/109515.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
optimization
collector
chalcopyrite
active pyrite
Opis:
Active pyrite is one of the most undesirable phenomena in the flotation of porphyry copper ores. Misreported pyrite into copper concentrates decreased the grade and recovery of copper. In this study, the effective parameters on the flotation process including grinding condition and chemical parameters were evaluated in order to decrease the active pyrite recovery by flotation. Firstly, optical microscopic and grinding studies were carried out to determine the optimal particle size and grinding time. The results showed that 43 minutes of grinding is necessary to achieve the optimum liberation degree of 53 µm for flotation. Then, the flotation effective parameters such as pH (7.3, 10, 10.5, 11, 11.5 and 12), collector type (Nascol, Aero 407, Aero 3477 and X231), collector concentration (12 and 25 mg/dm3), depressant concentration (0 and 25 mg/dm3) and frother concentration (0 and 25 mg/dm3) were investigated in a Denver-type laboratory flotation cell with a constant capacity of 2.5 dm3. The results showed that the optimal conditions for chalcopyrite flotation were pH of 11.5, Aero 407 as a collector with concentration of 25 mg/dm3, Dowfroth 250 (DF250) as a frother with concentration of 25 mg/dm3 and Na2SO3 as a depressant with concentration of 25 mg/dm3. The type of collector had greater effect on the chalcopyrite flotation than the other parameters. The recovery and grade of chalcopyrite and pyrite were obtained as 79.95%, 49% and 5.3%, 7.98% using the Aero 407, respectively. Under the optimum conditions, the grade of final concentrate increased from 0.94% to 21.3% with three cleaner stages.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 3; 922-933
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adsorption of yeast dextran on clinochlore surface and the implications for pyrite/clinochlore separation
Autorzy:
Wang, Zhen
Zou, Dan
Zhao, Kaile
Safarov, Sayfidin
Xu, Ying
Powiązania:
https://bibliotekanauki.pl/articles/2146917.pdf
Data publikacji:
2022
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
clinochlore
pyrite
flotation
yeast dextran
adsorption
Opis:
Silicate minerals with a certain degree of flotability are often easy to mix into sulfide ore concentrate in mineral processing industry. In this paper, the adsorption of yeast dextran on clinochlore and its application in pyrite/clinochlore separation were investigated. The adsorbed amount and micro polarity measurement results displayed that the yeast dextran molecules selectively adsorbed onto clinochlore surface compared with pyrite. The adsorbed yeast dextran resulted in the increase in the surface polarity of clinochlore surface, and inhibited the further adsorption of xanthate, thus keep it hydrophilic and depressed. Quantum chemical computation results indicated that yeast dextran was mainly adsorbed on mineral surface by the chelation with the surface metal active sites, and the chelating strength of yeast dextran with three ions was in the sequence of Fe3+ > Mg2+ > Fe2+. While Mg2+, Fe2+ and Fe3+ are the main metal ions on the surface of clinochlore, and Fe2+ is the unique metal ions on pyrite surface. This is the reason of the selectivity of the yeast dextran depressant for pyrite/clinochlore flotation system. The flotation results demonstrated that yeast dextran was qualified to selectively depress clinochlore in pyrite flotation.
Źródło:
Physicochemical Problems of Mineral Processing; 2022, 58, 4; art. no. 151635
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Flotation separation influenced by the rheological properties of diaspore-pyrite mixed pulp
Autorzy:
Zhao, Yongqing
Li, Xianhai
Powiązania:
https://bibliotekanauki.pl/articles/27323666.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
bauxite
diaspore
pyrite
flotation
rheological property
viscosity
Opis:
The effects of pyrite and diaspore with different particle sizes on the rheological properties of pulp with butyl xanthate added as a collector were studied, and the mechanism for rheological pyrite separation from diaspore by flotation was probed. The apparent viscosity of the diaspore pulp with different particle sizes was higher than that of pyrite, especially for -30 μm diaspore. Microfine diaspore was an important component affecting the apparent viscosity and yield stress of the diaspore-pyrite mixed pulp, and the pulp became a non-Newtonian fluid when the mass fraction of fine-grained diaspore in the mixed pulp was high. In this study, sodium hexametaphosphate (SHMP) was used to control the rheology of the mixed pulp and improve the pyrite flotation, and the S (sulfur) recovery rate first increased and then decreased with increasing SHMP concentration. The apparent viscosity of the pulp decreased by 3.01% and the S recovery rate increased by 34.83% when the amount of added SHMP was 0.05 mg/kg. The apparent viscosity with 0.50 mg/kg SHMP was 21.76% lower than that seen with the addition of 0.05 mg/kg SHMP, but the S recovery rate was also reduced by 14.94%. Further research showed that the increased SHMP concentration led to increases in the electronegativities of the particle surface and the repulsive force between particles, which prevented agglomeration of the particles, reduced the apparent viscosity and yield stress of the mixed pulp, promoted collisions between the pyrite particles and the bubbles, and reduced the resistance of the air bubbles to flotation.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 6; art. no. 174305
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of pyrite type on the electrochemistry of chalcopyrite/pyrite interactions
Autorzy:
Forbes, E.
Smith, L.
Vepsalainen, M.
Powiązania:
https://bibliotekanauki.pl/articles/110218.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
flotation
arsenic
pyrite
galvanic interaction
Surface oxidation
Opis:
Pyrite is the most common sulphide gangue mineral occurring in base metal sulphide ores around the world. Pyrite is known to galvanically interact with valuable minerals such as chalcopyrite, altering their electrochemical and flotation behaviour. Different types of pyrite are known to vary in texture, chemical composition and electrochemical activity. However, the effect that these differences have on the degree of pyrite interaction with chalcopyrite are not well studied. This work examines two distinct types of pyrite from different deposits that have a similar chemical composition, but vary greatly in texture. It investigates the way in which these pyrites interact with chalcopyrite surfaces, affecting both its electrochemical behaviour and floatability. It was found that the Renison pyrite was characterised by a much higher level of surface activity than the Huanzala pyrite. This was attributed to the elevated levels of arsenic within the mineral’s crystalline matrix.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 4; 1117-1129
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Impact of ovalbumin on pyrite flotation in the absence and presence of metal ions
Autorzy:
Guler, T.
Sahbudak, K.
Akdemir, U.
Cetinkaya, S.
Powiązania:
https://bibliotekanauki.pl/articles/110499.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
ovalbumin
metal ion
flotation
redox potential
Opis:
Recovery of gangue pyrite and its accidental activation are vital issues in flotation of complex sulfide ores. This work was performed by cyclic voltammetry (CV) and flotation tests to elucidate applicability of ovalbumin (OVA) as depressant for pyrite. The synergetic effect of metal ions in addition to its possible use in case of accidental activation by metal ions. CV tests stated that OVA adsorbed irreversibly on pyrite, and restricted electron transfer up to moderately oxidizing potentials due to electrostatic interaction together with weak hydrophobic interactions. At highly oxidizing potentials, adsorption occurred through electrochemical mechanisms through formation of metal-OVA chelates. Rate of pyrite depression with OVA was found to be potential dependent reaching its peak point around moderately oxidizing potentials both in absence and presence of metal ions. Electrochemically active metals display synergetic effect with OVA on pyrite depression, whereas noble metals activate pyrite and reduced depressing potency of OVA.
Źródło:
Physicochemical Problems of Mineral Processing; 2014, 50, 1; 31-40
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of cyanide salts and ferrous sulphate on pyrite flotation
Autorzy:
Kostovic, M.
Vucinic, D.
Powiązania:
https://bibliotekanauki.pl/articles/110668.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
flotation
ferrous sulphate
cyanide salts
depression
Opis:
The effect of cyanide salts as depressants, i.e. sodium cyanide (NaCN) and complex cyanide salts such as potassium ferricyanide (K3Fe(CN)6) and potassium ferrocyanide (K4Fe(CN)6), as well as combination of sodium cyanide with ferrous sulphate (FeSO4/NaCN) on pyrite flotation was investigated. Tests covered the frothless flotation of pyrite under different concentrations of depressants at various solution pH’s with potassium butyl xanthate (KBX) as collector. Flotation test results have shown that NaCN, and even more the combination of reagents FeSO4/NaCN are more successful in pyrite depression than complex cyanide salts, such as K3Fe(CN)6 and K4Fe(CN)6. Surface characteristics of pyrite were studied using rest potential (Eh) measurements and infrared attenuated total reflection spectroscopy (ATR-IR). In the presence of tested reagents in the flotation system, iron cyanide compounds and hydrated iron oxides were formed on pyrite surface. The composition of formed compounds depends not only on cyanide ions in the solution, but also on the pH of the system and solution species. These compounds, depending on the reagents used, are responsible for the resulting efficiency of the pyrite depression.
Źródło:
Physicochemical Problems of Mineral Processing; 2016, 52, 2; 609-619
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Study on surface modification of cerussite by thermochemical processing with pyrite
Autorzy:
Zheng, Yong-Xing
Ning, Ji-Lai
Xie, Haiyun
Lv, Jin-Fang
Hu, Pan-Jin
Pang, Jie
Powiązania:
https://bibliotekanauki.pl/articles/1448573.pdf
Data publikacji:
2021
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
cerussite
pyrite
surface modification
thermochemical processing
flotation
Opis:
In this paper, surface modification of cerussite by thermochemical processing with pyrite was studied based on microflotation tests, X-ray powder diffractometry (XRD), X-ray photoelectron spectroscopy (XPS) and electron probe microanalysis (EPMA). Microflotation test results showed that the surface modification facilitated flotation of the treated cerussite and improved the flotation recovery to approximately 90%. The results of XRD analyses confirmed that cerussite was transformed into massicot, which then interacted with pyrite to form $PbS$, $PbSO_4$, $PbO•PbSO_4$ and $4PbO•PbSO_4$. XPS analyses results revealed that both $PbS$ and $PbS_2$ were formed on the mineral surface, and the percentage of $PbS$ increased with increasing $FeS_2$/$PbCO_3$ (F/P) mole ratio, which was advantageous for the flotation of the modified cerussite. EPMA analyses showed that particles with layered configurations were obviously formed after thermochemical processing. The thickness of the products at the outer layer of the particles increased when the F/P mole ratio increased. Moreover, the S and O contents in the products increased and decreased, respectively.
Źródło:
Physicochemical Problems of Mineral Processing; 2021, 57, 1; 156-167
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A nanoparticle cationic polystyrene-co-poly(n-butylacrylate) collector to eliminate the negative effect of lizardite slimes in pyrite flotation
Autorzy:
Ai, Guanghua
Liu, Cheng
Zhu, Guangli
Yang, Siyuan
Powiązania:
https://bibliotekanauki.pl/articles/24085927.pdf
Data publikacji:
2023
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
nanoparticle collector
pyrite
lizardite slimes
flotation separation
Opis:
Lizardite slime coating is one of significant factors in the deterioration of the floatability of sulphide minerals. In this study, a nanoparticle cationic polystyrene-co-poly(n-butylacrylate)(PS-PBNH) collector was introduced to eliminate the negative impact of lizardite slimes in pyrite flotation. Microflotation results demonstrated that lizardite slims did not affect the recovery of pyrite in the presence of PS-PBNH. Good flotation separation of pyrite from lizardite was achieved when the nanoparticle PS-PBNH collector was used. The results from adsorption study indicated that PS-PBNH exhibited a significant adsorption on the pyrite surface in the presence of lizardite slimes. Sedimentation tests showed that hetero-aggregation occurred between lizardite slimes and pyrite, whereas the introduction of PS-PBNH collector resulted in a heterogeneous dispersion between them. Zeta potential measurements suggested that PS-PBNH collector interacted with pyrite surface, and the PS-PBNH adsorption changed the surface charge of pyrite from negative to be positive. As a result, the interaction of pyrite with lizardite shifted from electrostatic attraction to electrostatic repulsion, as supported by the DLVO calculations. These results indicated PS-PBNH can be used as a potential collector for pyrite flotation in pyrite/lizardite slimes system without the need for a depressant.
Źródło:
Physicochemical Problems of Mineral Processing; 2023, 59, 3; art. no. 170899
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ammonium chloride’s weakening effect on the copper activation of pyrite in flotation and the surface regulation mechanism behind it
Autorzy:
Zhang, Shengdong
Chen, Yumeng
Tong, Xiong
Xie, Xian
Lu, Yalin
Powiązania:
https://bibliotekanauki.pl/articles/110323.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
pyrite
depression
cuprammonium solution
pH buffering property
flotation
Opis:
The traditional separation process of pyrite and marmatite is carried out under highly alkaline conditions. Therefore, a large amount of lime is demanded and the zinc recovery cannot be guaranteed. However, under weakly alkaline conditions, copper-activated pyrite has good floatability, which is difficult to separate from marmatite. In this paper, ammonium chloride (NH4Cl) is used for depressing the flotation of copper-activated pyrite to achieve the separation of these two minerals under weakly alkaline environment. The flotation tests show that NH4Cl can significantly reduce the floatability of pyrite in weakly alkaline conditions. The results of adsorption tests and X-ray photoelectron spectroscopy (XPS) analyses indicate that NH4Cl can obviously change the composition of pyrite surface by increasing the content of iron/copper hydroxide and reducing the content of copper sulfides. Calculation of the solution composition demonstrates that the addition of NH4Cl results in the occurrence of Cu(NH3)n2+ and the pH buffering property. Based on these results, it can be concluded that the depression of NH4Cl on copper activated pyrite is mainly derived from two aspects: 1) the pH buffering property of the conjugated acid-base pair (NH4+/NH3) can impede the decline of OH- concentration, which results in more hydroxide adsorbed on pyrite; 2) NH3 (aq) competes with the pyrite surface to consume Cu2+through complexation, which causes a reduction in the amount of copper sulfides formed on the pyrite surface.
Źródło:
Physicochemical Problems of Mineral Processing; 2019, 55, 5; 1070-1081
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies