Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "przewietrzanie ścian" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Air flow measurements through the laboratory stand of the crossing of the long wall and ventilation gallery for CFD code validation
Pomiar prędkości powietrza przepływającego przez laboratoryjny model skrzyżowania ściany z chodnikiem nadścianowym dla potrzeb walidacji kodów CFD
Autorzy:
Branny, M.
Karch, M.
Wodziak, W.
Szmyd, J.
Jaszczur, M.
Nowak, R.
Powiązania:
https://bibliotekanauki.pl/articles/348721.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
PIV
walidacja modeli CFD
przewietrzanie ścian
validation of CFD models
longwall ventilation
Opis:
In this study results of the experimental and numerical research of the air flow through a system of T- -shape ventilation ducts have been presented. The laboratory model is a certain simplification of the system of the intersection of the long wall and the ventilation gallery. Simplifications refer both to the object's geometry such as the rectangular shape of the cross-section of the workings as well as the lack of elements constituting the long wall and heading equipment along with the air flow conditions such as the lack of air inflow from the goaf domain. The laboratory model consists of the inlet channel (the final part of the long wall), the cavity and the outlet channel (the ventilation gallery) at the end of which a fan has been installed. The aim of the conducted research is an attempt to evaluate the accuracy with which numerical simulations map the real flow. Velocity measurements have been conducted using the PIV method (Particle Image Velocimetry). The point of the measurement lies in the introduction of marker particles to the flowing fluid. Their movement is monitored by a CCD camera perpendicular to the illuminated plane. Digital registration and image correlation allows for the determination of the velocity vectors in the whole flow area. Numerical simulation of the air flow for identical conditions such as during experimental research has been carried out with the CFD methods (Computational Fluid Dynamics) and with the use of the FLUENT software. In the study two turbulence models have been tested: standard k-epsylon and the RNG k-epsylon model. Measurements have been conducted for an average flow velocity equal to 9,85 m/s, and so for Reynolds number equal to 148 600. The experimental results have been compared to the results of numerical simulations. The conducted research allows for evaluation of accuracy with which the numerical simulations map the real flow. The greatest differences between the measured and calculated velocity field occur in the cavity zone. In this part of the flow domain the standard k-epsylon model imitates the conditions of the real flow better than the RNG k-epsylon model. The velocity field at the beginning of the outlet channel is calculated with satisfactory accuracy, however, in the zone of the secondary flow differences between the measurements and calculations are meaningful. In this part of the flow domain the consistency of measurements and calculations is arrived at with the use of the RNG k-epsylon model.
W pracy prezentowane są wyniki badań eksperymentalnych i numerycznych przepływu powietrza przez układ przewodów wentylacyjnych (wyrobisk) w kształcie litery T. Model laboratoryjny jest pewnym uproszczeniem układu wyrobisk skrzyżowania ściany z chodnikiem wentylacyjnym. Uproszczenia dotyczą zarówno geometrii obiektu jak i warunków przepływu. Stanowisko laboratoryjne składa się z kanału dolotowego (końcowy fragment ściany), wnęki i kanału wylotowego (chodnik wentylacyjny) na którego końcu zainstalowano wentylator pracujący w trybie ssącym. Celem przeprowadzonych badań jest próba oszacowania dokładności z jaką symulacje numeryczne odwzorowują przepływ fizyczny. Pomiary prędkości wykonywano metodą PIV (Particle Image Velocimetry). Istota pomiaru polega na statystycznym oszacowaniu ruchu cząstek wskaźnikowych wymieszanych z powietrzem, których ruch rejestrowany jest przez kamerę cyfrową. Cyfrowa rejestracja i korelacja obrazów cząstek umożliwia określenie składowych wektora prędkości w całym obszarze przepływu. Symulację numeryczną przepływu powietrza, dla warunków identycznych jak w badaniach eksperymentalnych wykonano metodą CFD (Computational Fluid Dynamics) przy użyciu programu FLUENT. W pracy testowano dwa modele turbulencji: standardowy k-epsilon i jego modyfikację model RNG k-epsilon. Pomiary wykonano dla średniej prędkości przepływu równej 9,85 m/s czyli przy liczbie Reynoldsa wynoszącej 148 600. Wyniki eksperymentalne porównano z wynikami symulacji numerycznych. Wykonane badania pozwalają na ocenę dokładności z jaką symulacje numeryczne odwzorowują przepływ rzeczywisty. Największe różnice między zmierzonym i obliczonym polem prędkości występują w strefie wnęki. W tej części obszaru przepływu model k-epsilon lepiej niż RNG k-epsilon przybliża warunki rzeczywistego przepływu. Pole prędkości w kanale dolotowym jak i na początku kanału wylotowego obliczane jest z zadawalającą dokładnością jakkolwiek w strefie przepływu wtórnego różnice pomiędzy pomiarami i obliczeniami są znaczące. Dobrą zgodność pomiarów z obliczeniami w tym fragmencie obszaru przepływu uzyskuje się przy użyciu modelu RNG k-epsilon.
Źródło:
AGH Journal of Mining and Geoengineering; 2012, 36, 2; 59-68
1732-6702
Pojawia się w:
AGH Journal of Mining and Geoengineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Monitoring and controlling methane hazard in excavations in hard coal mines
Kontrola i zwalczanie zagrożenia metanowego w wyrobiskach kopalń węgla kamiennego
Autorzy:
Szlązak, N.
Obracaj, D.
Borowski, M.
Swolkień, J.
Korzec, M.
Powiązania:
https://bibliotekanauki.pl/articles/348769.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
methane monitors
methane hazard control
longwall ventilation system
work safety in mines
metanometria automatyczna
zwalczanie zagrożenia metanowego
przewietrzanie ścian eksploatacyjnych
bezpieczeństwo pracy w kopalni
Opis:
At present Polish mining regulations require the use of methane monitors with short or fast response times for current switchboard types when methane hazards co-exist with rock-burst hazards. According to regulations the number and location of sensing devices for methane monitors should be consistent with the conditions present in any given monitored area. This article presents an analysis of regulations referring to a control system and methane hazard monitoring. The analysis takes the Polish legislative system into consideration and looks at regulations in selected countries with well-developed mining industries. Methods for methane hazard control in blind headings with auxiliary ventilation and in mining areas are also discussed. Methods are illustrated by using examples of monitoring methane hazard control in driven roadways and in longwalls ventilated by U and Y systems.
Aktualnie obowiązujące przepisy górnicze nakładają obowiązek stosowania metanometrii automatycznej o skróconym czasie repetycji pomiarów lub o pomiarze ciągłym dla nowo budowanych central oraz w przypadkach, gdy zagrożenie metanowe występuje w układzie skojarzonym z zagrożeniem tąpaniami. W przepisach określono warunki dotyczące liczby i miejsc zabudowy czujników metanu. W artykule przedstawiono analizę przepisów decydujących o systemie kontroli i monitoringu zagrożenia metanowego. W analizie uwzględniono stan prawny obowiązujący w Polsce oraz wybranych krajach z rozwiniętym przemysłem górniczym. Omówiono metody kontroli zagrożenia metanowego w wyrobiskach przewietrzanych lutniociągami oraz w rejonach eksploatacyjnych. Metody te poparte zostały przykładami monitoringu i zwalczania zagrożenia metanowego w drążonych wyrobiskach korytarzowych oraz w wyrobiskach ścianowych przewietrzanych systemami U i Y.
Źródło:
AGH Journal of Mining and Geoengineering; 2013, 37, 1; 105-116
1732-6702
Pojawia się w:
AGH Journal of Mining and Geoengineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wpływ intensywności przewietrzania ściany na skuteczność inertyzacji
Influence of longwall ventilation intensity on the effectiveness of inertisation
Autorzy:
Szlęzak, Nikodem
Piergies, Kazimierz
Powiązania:
https://bibliotekanauki.pl/articles/302541.pdf
Data publikacji:
2019
Wydawca:
Wydawnictwo Druk-Art
Tematy:
zapotrzebowanie na surowce
głębokość eksploatacji
przewietrzanie ścian
zapobieganie pożarom
skuteczność inertyzacji
demand for raw materials
depth of exploitation
ventilation of walls
fire prevention
inertisation efficiency
Opis:
Tlen, źródło wysokiej temperatury oraz materiał palny to elementy niezbędne przy powstaniu pożaru. Zapobieganie pożarom podziemnym polega na usunięciu przynajmniej jednego z tych czynników. Jednak eksploatacja bez pozostawiania resztek węgla w zrobach jest praktycznie niemożliwa, trudne jest również usunięcie ciepła powstałego podczas procesu utleniania, dlatego należy dążyć do wyeliminowania lub znacznego obniżenia stężenia tlenu w powietrzu, w zrobach ścian wydobywczych. Można to osiągnąć poprzez inertyzację, w której obojętny chemicznie gaz, który w warunkach danej reakcji nie uczestniczy w jej przebiegu, zastępuje powietrze lub palną atmosferę. Wraz ze wzrostem głębokości eksploatacji nasilają się zagrożenia naturalne, również często występują równocześnie. Metody profilaktyki wobec jednego zagrożenia powodują wzrost innego zagrożenia. Przy profilaktyce pożarowej zaleca się zmniejszenie dopływu powietrza do ściany, natomiast zwalczanie zagrożenia metanowego wymaga jego zwiększenia. W artykule przedstawiono przykład wpływu intensywności przewietrzania ściany na skuteczność inertyzacji zrobów ściany zawałowej. Rozważono ścianę prowadzoną w warunkach zagrożenia metanowego, przy dużej skłonności węgla do samozapalenia oraz w trakcie przechodzenia przez strefę zaburzeń geologicznych.
Oxygen, the source of high temperature and combustible material are the elements necessary for the creation of a fire. Prevention of underground fires is based on the removal of at least one of these factors. However, it is practically impossible to exploit without leaving coal remnants in goaves, it is also difficult to remove the heat produced during the oxidation process, therefore it is necessary to eliminate or reduce considerably oxygen concentration in the air of goaves of longwalls with caving in hard coal mines. This can be achieved by inertisation. The method consists in a partial or total replacement of air or combustible atmosphere with an impartial gas. Along with the increase of depth of exploitation, natural hazards intensify, they also often coexist. Prevention methods for one threat cause the growth of another threat. In fire prevention it is recommended to reduce the air supply to the longwall, while combating the methane hazard requires its increase. The article presents an example of the influence of longwall ventilation intensity on the effectiveness of inertisation in the goafs of a longwall. The longwall was considered under methane hazard conditions, with high propensity for coal to spontaneously ignite and during geological disturbances.
Źródło:
Napędy i Sterowanie; 2019, 21, 7/8; 82-89
1507-7764
Pojawia się w:
Napędy i Sterowanie
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies