Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "proper rainbow connection number" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Proper Rainbow Connection Number of Graphs
Autorzy:
Doan, Trung Duy
Schiermeyer, Ingo
Powiązania:
https://bibliotekanauki.pl/articles/32222687.pdf
Data publikacji:
2021-08-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
edge-colouring
rainbow connection number
proper rainbow connection number
Opis:
A path in an edge-coloured graph is called a rainbow path if its edges receive pairwise distinct colours. An edge-coloured graph is said to be rainbow connected if any two distinct vertices of the graph are connected by a rainbow path. The minimum k for which there exists such an edge-colouring is the rainbow connection number rc(G) of G. Recently, Bau et al. [Rainbow connectivity in some Cayley graphs, Australas. J. Combin. 71 (2018) 381–393] introduced this concept with the additional requirement that the edge-colouring must be proper. The proper rainbow connection number of G, denoted by prc(G), is the minimum number of colours needed in order to make it properly rainbow connected. Obviously, prc(G) ≥ max{rc(G), χ′(G)}. In this paper we first prove an improved upper bound prc(G) ≤ n for every connected graph G of order n ≥ 3. Next we show that the difference prc(G) – max{rc(G), χ′(G)} can be arbitrarily large. Finally, we present several sufficient conditions for graph classes satisfying prc(G) = χ′(G).
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 3; 809-826
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On Proper (Strong) Rainbow Connection of Graphs
Autorzy:
Jiang, Hui
Li, Wenjing
Li, Xueliang
Magnant, Colton
Powiązania:
https://bibliotekanauki.pl/articles/32083886.pdf
Data publikacji:
2021-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
proper (strong) rainbow connection number
Cartesian product
chromatic index
Opis:
A path in an edge-colored graph $G$ is called a rainbow path if no two edges on the path have the same color. The graph $G$ is called rainbow connected if between every pair of distinct vertices of $G$, there is a rainbow path. Recently, Johnson et al. considered this concept with the additional requirement that the coloring of $G$ is proper. The proper rainbow connection number of $G$, denoted by $prc(G)$, is the minimum number of colors needed to properly color the edges of $G$ so that $G$ is rainbow connected. Similarly, the proper strong rainbow connection number of $G$, denoted by $psrc(G)$, is the minimum number of colors needed to properly color the edges of $G$ such that for any two distinct vertices of $G$, there is a rainbow geodesic (shortest path) connecting them. In this paper, we characterize those graphs with proper rainbow connection numbers equal to the size or within 1 of the size. Moreover, we completely solve a question proposed by Johnson et al. by proving that if \(G = K_{p1} \Box \dots \Box K_{pn}\), where $n≥ 1$, and $p_1, . . ., p_n>1$ are integers, then $prc(G) = psrc(G) = χ^′(G)$, where $χ^′(G)$ denotes the chromatic index of $G$. Finally, we investigate some suffcient conditions for a graph $G$ to satisfy $prc(G) = rc(G)$, and make some slightly positive progress by using a relation between $rc(G)$ and the girth of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2021, 41, 2; 469-479
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies