Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "prognoza szeregów czasowych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Wspomaganie planowania wielkości zapotrzebowania na klej poliuretanowy w kopalni węgla kamiennego
Demand planning support for polyurethane adhesive in coal mine
Autorzy:
Jakowska-Suwalska, K.
Sojda, A.
Wolny, M.
Powiązania:
https://bibliotekanauki.pl/articles/322466.pdf
Data publikacji:
2012
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
kopalnia węgla kamiennego
zarządzanie materiałami
prognoza szeregów czasowych
model ekonometryczny
poliuretan
hard coal mine
materials management
time series forecasting
econometric model
polyurethane
Opis:
Praca przedstawia propozycję metody wspomagania planowania zapotrzebowania na klej poliuretanowy, która bazuje na metodach prognozowania szeregów czasowych oraz na podstawie modelu ekonometrycznego. Jako finalny model prognostyczny wspomagający planowanie wielkości zapotrzebowania zaproponowano kombinowany model agregujący prognozy postawione za pomocą wybranych modeli. Agregacja polega na zastosowaniu sumy ważonej, przy tym wagi ustalono na podstawie kryterium minimalnego błędu prognoz wygasłych.
In this paper proposal of method for polyurethane adhesive demand planning support is presented. The method is based on models of time series forecasting and econometric model. The proposal is to combine the forecasts through application of weighted sum. The weight factors are determined by the minimal mean error of extinct forecasts criterion.
Źródło:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska; 2012, 61; 127-138
1641-3466
Pojawia się w:
Zeszyty Naukowe. Organizacja i Zarządzanie / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting European thermal coal spot prices
Autorzy:
Krzemień, A.
Riesgo Fernandez, P.
Suárez Sánchez, A.
Sánchez Lasheras, F.
Powiązania:
https://bibliotekanauki.pl/articles/92159.pdf
Data publikacji:
2015
Wydawca:
Główny Instytut Górnictwa
Tematy:
thermal coal
price forecasting
time series analysis
neural network
autoregressive model
węgiel energetyczny
prognoza cen
analiza szeregów czasowych
sieć neuronowa
model autoregresyjny
Opis:
This paper presents a one-year forecast of European thermal coal spot prices by means of time series analysis, using data from IHS McCloskey NW Europe Steam Coal marker (MCIS). The main purpose was to achieve a good fit for the data using a quick and feasible method and to establish the transformations that better suit this marker, together with an affordable way for its validation. Time series models were selected because the data showed an autocorrelation systematic pattern and also because the number of variables that influence European coal prices is very large, so forecasting coal prices as a dependent variable makes necessary to previously forecast the explanatory variables. A second-order Autoregressive process AR(2) was selected based on the autocorrelation and the partial autocorrelation function. In order to determine if the results obtained are a good fit for the data, the possible drivers that move the European thermal coal spot prices were taken into account, establishing a hypothesis in which they were divided into four categories: (1) energy side drivers, that directly relates coal prices with other energy commodities like oil and natural gas; (2) demand side drivers, that relates coal prices both with the Western World economy and with emerging economies like China, in connection with the demand for electricity in these economies; (3) commodity currency drivers, that have an influence for holders of different commodity currencies in countries that export or import coal; and (4) supply side drivers, involving the production costs, transportation, etc. Finally, in order to analyse the time series model performance a Generalized Regression Neural Network (GRNN) was used and its performance compared against the whole AR(2) process. Empirical results obtained confirmed that there is no statistically significant difference between both methods. The GRNN analysis also allowed pointing out the main drivers that move the European Thermal Coal Spot prices: crude oil, USD/CNY change and supply side drivers.
Źródło:
Journal of Sustainable Mining; 2015, 14, 4; 203-210
2300-1364
2300-3960
Pojawia się w:
Journal of Sustainable Mining
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies