Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "proces gaussowski" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Kernel function based regression approaches for estimating the oxygen transfer performance of plunging hollow jet aerator
Autorzy:
Kumar, M.
Tiwari, N. K.
Ranjan, S.
Powiązania:
https://bibliotekanauki.pl/articles/368684.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
volumetric oxygen transfer coefficient
multiple nonlinear regression
Gaussian process regression
support vector regression
współczynnik wnikania tlenu
regresja nieliniowa
proces gaussowski
regresja wektora wsparcia
Opis:
Purpose: To evaluate the capability of various kernels employed with support vector regression (SVR) and Gaussian process regression (GPR) techniques in estimating the volumetric oxygen transfer coefficient of plunging hollow jets. Design/methodology/approach: In this study, a data set of 81 observations is acquired from laboratory experiments of hollow jets plunging on the surface of water in the tank. The jet variables: jet velocity, jet thickness, jet length, and water depth are varied accordingly and the values of volumetric oxygen transfer coefficient is computed. An empirical relationship expressing the oxygenation performance of plunging hollow jet aerator in terms of jet variables is formulated using multiple nonlinear regression. The performance of this nonlinear relationship is compared with various kernel function based SVR and GPR models. Models developed with the training data set (51 observations) are checked on testing data set (24 observations) for performance comparison. Sensitivity analysis is carried out to examine the influence of jet variables in effecting the oxygen transfer capabilities of plunging hollow jet aerator. Findings: The overall comparison of kernels yielded good estimation performance of Radial Basis Function kernel (RBF) and Pearson VII Function kernel (PUK) using the SVR technique which is followed by nonlinear regression, and other kernel function based regression models. Research limitations/implications: The results of the study pertaining to the performance of kernels are based on the current experimental conditions and the estimation potential of the regression models may fluctuate beyond the selection of current data range due to datadependant learning of the soft computing models. Practical implications: Volumetric oxygen transfer coefficient of plunging hollow jets can be predicted precisely using SVR model by employing RBF as kernel function as compared to empirical correlation and other kernel function based regression models. Originality/value: The comparative analysis of kernel functions is conducted in this study. In previous studies, the predictive modelling approaches are implemented in simulating the aeration properties of cylindrical solid jets only, while this paper simulates the volumetric oxygen transfer coefficient of diverging hollow jets with the jet variables by utilizing polynomial, normalized polynomial, PUK, and RBF kernels in SVR and GPR.
Źródło:
Journal of Achievements in Materials and Manufacturing Engineering; 2019, 95, 2; 74-84
1734-8412
Pojawia się w:
Journal of Achievements in Materials and Manufacturing Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Use of machine learning algorithm for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy
Autorzy:
Singh Nain, S.
Sai, R.
Sihag, P.
Vambol, S.
Vambol, V.
Powiązania:
https://bibliotekanauki.pl/articles/378951.pdf
Data publikacji:
2019
Wydawca:
Stowarzyszenie Komputerowej Nauki o Materiałach i Inżynierii Powierzchni w Gliwicach
Tematy:
support vector machine
Gaussian process
artificial neural network
WEDM
maszyna wektorów nośnych
proces gaussowski
sztuczna sieć neuronowa
Opis:
Purpose: With the end goal to fulfil stringent structural shape of the component in aeronautics industry, machining of Nimonic-90 super alloy turns out to be exceptionally troublesome and costly by customary procedures, for example, milling, grinding, turning, etc. For that reason, the manufacture and design engineer worked on contactless machining process like EDM and WEDM. Based on previous studies, it has been observed that rare research work has been published pertaining to the use of machine learning in manufacturing. Therefore the current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90. Design/methodology/approach: The experiments have been performed on the WEDM considering five process variables. The Taguchi L 18 mixed type array is used to formulate the experimental plan. The surface roughness is checked by using surface contact profilometre. The evolutionary algorithms like SVM, GP and ANN approaches have been used to evaluate the SR of WEDM of Nimonic-90 super alloy. Findings: The entire models present the significant results for the better prediction of SR peculiarities of WEDM of Nimonic-90 superalloy. The GP PUK kernel model is dominating the entire model. Research limitations/implications: The investigation was carried for the Nimonic-90 super alloy is selected as a work material. Practical implications: The results of this study provide an opportunity to conduct contactless processing superalloy Nimonic-90. At the same time, this contactless process is much cheaper, faster and more accurate. Originality/value: An experimental work has been reported on the WEDM of Udimet-L605 and use of advance machine learning algorithm and optimization approaches like SVM, and GRA is recommended. A study on WEDM of Inconel 625 has been explored and optimized the process using Taguchi coupled with grey relational approach. The applicability of some evolutionary algorithm like random forest, M5P, and SVM also tested to evaluate the WEDM of Udimet-L605.The fuzzy- inference and BP-ANN approached is used to evaluate the WEDM process. The multi-objective optimization using ratio analysis approach has been utilized to evaluate the WEDM of high carbon & chromium steel. But this current research work proposed the use of SVM, GP and ANN methods to evaluate the WEDM of Nimonic-90.
Źródło:
Archives of Materials Science and Engineering; 2019, 95, 1; 12-19
1897-2764
Pojawia się w:
Archives of Materials Science and Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault tolerant control using Gaussian processes and model predictive control
Autorzy:
Yang, X.
Maciejowski, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/330117.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
fault tolerant control
Gaussian process
model predictive control
aircraft control
probabilistic modelling
sterowanie tolerujące uszkodzenia
proces gaussowski
sterowanie predykcyjne
sterowanie samolotem
modelowanie probabilistyczne
Opis:
Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 1; 133-148
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies