Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "problem czasu" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Krytyka operacjonizmu z uwzględnieniem operacyjnej definicji czasu
Critique of Operationalism Including the Problem of the Operational Definition of Time
Autorzy:
Róg, Jakub
Powiązania:
https://bibliotekanauki.pl/articles/31232820.pdf
Data publikacji:
2023
Wydawca:
Katolicki Uniwersytet Lubelski Jana Pawła II. Towarzystwo Naukowe KUL
Tematy:
operationalism
operational definition
Bridgman
definition of time
operational definetion of time
quantum mechanics
problem of time
operacjonizm
operacyjna definicja
definicja czasu
operacyjna definicja czasu
mechanika kwantowa
problem czasu
Opis:
W artykule omówiono ważniejsze argumenty przeciw operacjonizmowi Percy’ego W. Bridgmana sformułowane na przestrzeni ostatnich dekad oraz przedyskutowano operacyjne sposoby definiowania czasu w mechanice klasycznej oraz nierelatywistycznej mechanice kwantowej. O ile w mechanice klasycznej nie napotyka się większych trudności w sformułowaniu operacyjnej definicji czasu, o tyle w formalizmie teorii kwantowej zadanie to staje się niemożliwe. Co, niezależnie od dyskusyjnego statusu czasu w mechanice kwantowej, prowadzi do ogólniejszego pytania, czy można pogodzić mechanikę kwantową z podejściem operacyjnym.
The article discusses concerns against Percy W. Bridgman’s operationalism raised within the last few decades and analyses possibilities of defining the operational definition of time in classical and quantum mechanics. Although it seems unproblematic in the classical case, in quantum mechanics, this task seems to be impossible. It leads to a major question of whether quantum mechanics and operationalism can be reconciled.
Źródło:
Roczniki Filozoficzne; 2023, 71, 3; 231-250
0035-7685
Pojawia się w:
Roczniki Filozoficzne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Accuracy of the Kaufmann and Desbazeille algorithm for time-cost trade-off project problems
Dokładność algorytmu Kaufmanna i Desbazeille w problemach optymalizacji czasowo-kosztowej projektu
Autorzy:
Anholcer, Marcin
Gaspars-Wieloch, Helena
Powiązania:
https://bibliotekanauki.pl/articles/422868.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
time-cost tradeoff project analysis (TCTP-analysis)
network
critical path
accuracy of the algorithm
project compression time
time-cost curves
deadline problem
analiza czasowo-kosztowa projektów
sieć
ścieżka krytyczna
dokładność algorytmu
skracanie czasu realizacji projektu
krzywe czasowo-kosztowe
minimalizacja kosztu przy zadanym czasie dyrektywnym
Opis:
The time-cost tradeoff analysis is a very important issue in the project management. The Kaufmann-Desbazeille method is considered by numerous authors as an exact algorithm to solve that problem, but in some articles it has been proved that for specific network cases the procedure only leads to quasi-optimal solutions. In this paper we calculate the average accuracy of the algorithm for several deterministic and randomly generated networks. The accuracy of the KDA is the worst when: - the network is generated in a deterministic way (an even number of nodes, the network contains only arcs connecting neighbouring nodes, neighbouring even nodes and neighbouring odd nodes, thus it has many critical and subcritical paths with a lot of common arcs), - each type of activities in such a network has very specific time-cost characteristics. The structure of the network has the influence on the performance of KDA. It should be however analyzed together with the distribution of the shortening costs.
Analiza czasowo–kosztowa jest bardzo ważnym elementem zarządzania projektem. Algorytm Kaufmanna–Desbazeille dla tego problemu jest przez wielu autorów określany mianem dokładnego, lecz w kilku pracach wykazano, iż w niektórych przypadkach stosowanie tej procedury prowadzi jedynie do rozwiązań bliskich optimum. W artykule wyznaczamy średnią dokładność algorytmu dla pewnej liczby sieci o z góry ustalonej bądź losowo wygenerowanej strukturze. Dokładność procedury Kaufmanna i Desbazeille jest najniższa, gdy: - sieć jest generowana w sposób deterministyczny (parzysta liczba węzłów, sieć składa się z samych łuków łączących sąsiednie węzły, sąsiednie węzły parzyste i sąsiednie węzły nieparzyste, a więc posiada wiele ścieżek krytycznych i podkrytycznych ze wspólnymi łukami), - każdy typ czynności w tak skonstruowanej sieci ma bardzo specyficzne charakterystyki czasowo-kosztowe. Struktura sieci ma wpływ na wydajność algorytmu. Powinna być jednak analizowana łącznie z rozkładem jednostkowych kosztów skrócenia czynności.
Źródło:
Przegląd Statystyczny; 2013, 60, 3; 341-357
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies