Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "probabilistic neural" wg kryterium: Temat


Wyświetlanie 1-11 z 11
Tytuł:
Topological properties of four-layered neural networks
Autorzy:
Javaid, M.
Abbas, M.
Liu, Jia-Bao
Teh, W. C.
Cao, Jinde
Powiązania:
https://bibliotekanauki.pl/articles/91541.pdf
Data publikacji:
2019
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
degree of node
topological properties
neural network
probabilistic neural
network
Opis:
A topological property or index of a network is a numeric number which characterises the whole structure of the underlying network. It is used to predict the certain changes in the bio, chemical and physical activities of the networks. The 4-layered probabilistic neural networks are more general than the 3-layered probabilistic neural networks. Javaid and Cao [Neural Comput. and Applic., DOI 10.1007/s00521-017-2972-1] and Liu et al. [Journal of Artificial Intelligence and Soft Computing Research, 8(2018), 225-266] studied the certain degree and distance based topological indices (TI’s) of the 3-layered probabilistic neural networks. In this paper, we extend this study to the 4-layered probabilistic neural networks and compute the certain degree-based TI’s. In the end, a comparison between all the computed indices is included and it is also proved that the TI’s of the 4-layered probabilistic neural networks are better being strictly greater than the 3-layered probabilistic neural networks.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2019, 9, 2; 111-122
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fault diagnosis model of rolling bearing based on parameter adaptive VMD algorithm and Sparrow Search Algorithm-Based PNN
Autorzy:
Li, Junxing
Liu, Zhiwei
Qiu, Ming
Niu, Kaicen
Powiązania:
https://bibliotekanauki.pl/articles/24200836.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
rolling bearing
failure diagnosis
adaptive variational mode decomposition
sparrow probabilistic neural network
Opis:
Fault diagnosis of rolling bearings is essential to ensure the proper functioning of the entire machinery and equipment. Variational mode decomposition (VMD) and neural networks have gained widespread attention in the field of bearing fault diagnosis due to their powerful feature extraction and feature learning capacity. However, past methods usually utilize experiential knowledge to determine the key parameters in the VMD and neural networks, such as the penalty factor, the smooth factor, and so on, so that generates a poor diagnostic result. To address this problem, an Adaptive Variational Mode Decomposition (AVMD) is proposed to obtain better features to construct the fault feature matrix and Sparrow probabilistic neural network (SPNN) is constructed for rolling bearing fault diagnosis. Firstly, the unknown parameters of VMD are estimated by using the genetic algorithm (GA), then the suitable features such as kurtosis and singular value entropy are extracted by automatically adjusting the parameters of VMD. Furthermore, a probabilistic neural network (PNN) is used for bearing fault diagnosis. Meanwhile, embedding the sparrow search algorithm (SSA) into PNN to obtain the optimal smoothing factor. Finally, the proposed method is tested and evaluated on a public bearing dataset and bearing tests. The results demonstrate that the proposed method can extract suitable features and achieve high diagnostic accuracy.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 2; art. no. 163547
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees
Autorzy:
Tambouratzis, T>
Souliou, D.
Chalikias, M.
Gregoriades, A.
Powiązania:
https://bibliotekanauki.pl/articles/91652.pdf
Data publikacji:
2014
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
traffic accident
location
prediction
probabilistic neural networks
random forest
accuracy
efficiency
decision tree
Opis:
The development of universal methodologies for the accurate, efficient, and timely prediction of traffic accident location and severity constitutes a crucial endeavour. In this piece of research, the best combinations of salient accident-related parameters and accurate accident severity prediction models are determined for the 2005 accident dataset brought together by the Republic of Cyprus Police. The optimal methodology involves: (a) information mining in the form of feature selection of the accident parameters that maximise prediction accuracy (implemented via scatter search), followed by feature extraction (implemented via principal component analysis) and selection of the minimal number of components that contain the salient information of the original parameters, which combined bring about an overall 74.42% reduction in the dataset dimensionality; (b) accident severity prediction via probabilistic neural networks and random forests, both of which independently accomplish over 96% correct prediction and a balanced proportion of under- and over-estimations of accident severity. An explanation of the superiority of the optimal combinations of parameters and models is given, as is a comparison with existing accident classification/prediction approaches.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2014, 4, 1; 31-42
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Education Quality Detection Method Based on the Probabilistic Neural Network Algorithm
Autorzy:
Wu, Changdong
Jiang, Hua
Wang, Ping
Powiązania:
https://bibliotekanauki.pl/articles/328682.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Polskie Towarzystwo Diagnostyki Technicznej PAN
Tematy:
detection
probabilistic neural network
classification
students' achievement
education quality
probabilistyczna sieć neuronowa
klasyfikacja
osiągnięcia studentów
jakość kształcenia
Opis:
The traditional education quality detection method is too single and unreasonable, which is not suitable to evaluate students' ability comprehensively. In this paper, the probabilistic neural network (PNN) algorithm is used to detect the education quality by considering the important impact between the various achievements of students. PNN algorithm originates from Bayesian decision rule, and it uses the non-linear Gaussian Parzen window as the probability density function. As PNN model has the virtues of strong nonlinear and anti-interfering ability, it is fit to detect the education quality by classifying the students' achievements. Besides, the influences of different evaluation models on classification accuracy and efficiency are also discussed in this paper. Furthermore, the effect of spread value on PNN model is also discussed. Finally, the actual data are used to detect the education quality. Experimental results show that the detection accuracy can reach 95%, and the detection time is only 0.0156s based on the proposed method. That is to say, the method is a very practical detection algorithm with high accuracy and efficiency. Moreover, it also provides a reference for how to further improve the teaching quality.
Źródło:
Diagnostyka; 2020, 21, 4; 79-86
1641-6414
2449-5220
Pojawia się w:
Diagnostyka
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Statistical testing of segment homogeneity in classification of piecewise-regular objects
Autorzy:
Savchenko, A. V.
Belova, N. S.
Powiązania:
https://bibliotekanauki.pl/articles/330652.pdf
Data publikacji:
2015
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
statistical pattern recognition
testing of segment homogeneity
probabilistic neural network
rozpoznawanie obrazu
jednorodność segmentu
probabilistyczna sieć neuronowa
Opis:
The paper is focused on the problem of multi-class classification of composite (piecewise-regular) objects (e.g., speech signals, complex images, etc.). We propose a mathematical model of composite object representation as a sequence of independent segments. Each segment is represented as a random sample of independent identically distributed feature vectors. Based on this model and a statistical approach, we reduce the task to a problem of composite hypothesis testing of segment homogeneity. Several nearest-neighbor criteria are implemented, and for some of them the well-known special cases (e.g., the Kullback–Leibler minimum information discrimination principle, the probabilistic neural network) are highlighted. It is experimentally shown that the proposed approach improves the accuracy when compared with contemporary classifiers.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2015, 25, 4; 915-925
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dimensionality Reduction for Probabilistic Neural Network in Medical Data Classification Problems
Autorzy:
Kusy, M.
Powiązania:
https://bibliotekanauki.pl/articles/226697.pdf
Data publikacji:
2015
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
probabilistic neural network
dimensionality reduction
feature selection
feature extraction
single decision tree
random forest
principal component analysis
prediction ability
Opis:
This article presents the study regarding the problem of dimensionality reduction in training data sets used for classification tasks performed by the probabilistic neural network (PNN). Two methods for this purpose are proposed. The first solution is based on the feature selection approach where a single decision tree and a random forest algorithm are adopted to select data features. The second solution relies on applying the feature extraction procedure which utilizes the principal component analysis algorithm. Depending on the form of the smoothing parameter, different types of PNN models are explored. The prediction ability of PNNs trained on original and reduced data sets is determined with the use of a 10-fold cross validation procedure.
Źródło:
International Journal of Electronics and Telecommunications; 2015, 61, 3; 289-300
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie probabilistycznych sieci neuronowych i sygnałów drganiowych do diagnozowania uszkodzeń wtryskiwaczy silnika ZS
Application of probabilistic neural network and vibration signals for diesel car engine fuel injectors damage
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/197906.pdf
Data publikacji:
2013
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
drgania
probabilistyczna sieć neuronowa
silnik spalinowy
silnik ZS
pojazd samochodowy
diagnostics
vibrations
probabilistic neural network
diesel engine
automotive vehicle
Opis:
W przeprowadzonych badaniach podjęto próbę określenia występującego uszkodzenia wtryskiwaczy w silniku spalinowym samochodu. Za obiekt badań posłużył samochód Ford Mondeo, napędzany silnikiem ZS o pojemności 2,0 [dm3]. Do diagnozowania uszkodzenia wykorzystano sygnały drganiowe, generowane przez silnik – wstępnie przetworzone przy wykorzystaniu dyskretnej transformaty falkowej, oraz probabilistyczne sieci neuronowe. W artykule zaproponowano wykorzystanie analizy DWT oraz energii lub entropii, będących podstawą systemu diagnozującego.
Conducted tests attempted to determine the occurring damage of fuel injectors in car combustion engine. Test object was Ford Mondeo car powered by diesel engine with capacity of 2.0 [dm3]. In order to diagnose the damage the vibration signals generated by the engine were used – initially processed with the use of discrete wavelet transform and probabilistic neural networks. In this article is proposed using DWT analysis and energy or entropy which are a base for diagnostic system.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2013, 81; 25-30
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pattern Classification of Fabric Defects Using a Probabilistic Neural Network and Its Hardware Implementation using the Field Programmable Gate Array System
Klasyfikacja rodzaju defektów tkanin za pomocą probabilistycznej sztucznej sieci neuronowej oraz za pomocą systemu FPGA
Autorzy:
Hasnat, A.
Ghosh, A.
Khatun, A.
Halder, S.
Powiązania:
https://bibliotekanauki.pl/articles/234369.pdf
Data publikacji:
2017
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
classification
fabric defect
field programmable gate array (FPGA)
radial basis function
probabilistic neural network
klasyfikacja wad tkanin
probabilistyczna sieć neuronowa
Opis:
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns.
W pracy zaprezentowano system klasyfikacji wad tkanin przy użyciu probabilistycznej sieci neuronowej (PNN) i przy zastosowaniu systemu Field Programmable Gate Array (FPGA). PNN pozwala na osiągnięcie dokładności 98 ± 2% dla zbioru danych testowych, podczas gdy system FPGA pozwala na osiągnięcie dokładności około 94 ± 2%. System FPGA pracuje przy częstotliwości 50,777 MHz, co odpowiada 19,694 ns.
Źródło:
Fibres & Textiles in Eastern Europe; 2017, 1 (121); 42-48
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie probabilistycznych sieci neuronowych do wyznaczania ryzyka powstania szkód w budynkach poddanych wstrząsom górniczym
Probabilistic neural networks in the assessment of the risk of damage to buildings subject to mining tremors
Autorzy:
Witkowski, M.
Rusek, J.
Powiązania:
https://bibliotekanauki.pl/articles/166968.pdf
Data publikacji:
2017
Wydawca:
Stowarzyszenie Inżynierów i Techników Górnictwa
Tematy:
obiekty budowlane
wstrząsy górnicze
ryzyko
szkody górnicze
probabilistyczne sieci neuronowe
PNN
building structures
mining tremors
risk
mining damage
probabilistic neural network
Opis:
W pracy przedstawiono metodykę pozwalającą na wyznaczenie ryzyka powstania szkód górniczych w budynkach o tradycyjnej konstrukcji murowanej w przypadku silnych wstrząsów górniczych. Podstawą do analiz była baza danych o zgłoszeniach uszkodzeń, jakie wystąpiły po wstrząsach z 20.02.2002 r., 16.05.2004 r. oraz 21.05.2006 r. (LGOM Polkowice) W oparciu o te dane utworzono model klasyfikacyjny w postaci probabilistycznej sieci neuronowej (PNN - Probabilistic Neural Network). Bazując na wynikach wcześniejszych prac, w modelu ujęto konstrukcyjne i geometryczne cechy budynków oraz ich zabezpieczenia przeciwko wstrząsom górniczym. Powstały klasyfikator pozwala na wskazanie prawdopodobieństwa powstania szkody przy zadanym zestawie zmiennych wejściowych. Probabilistyczna notacja modelu daje możliwość efektywnego szacowania prawdopodobieństwa wystąpienia szkody w analizie dużych grup obiektów budowlanych zlokalizowanych w obszarze oddziaływań parasejsmicznych. Pozwolić to może z kolei na oszacowanie, z odpowiednim prawdopodobieństwem, nakładów finansowych, które zakład górniczy powinien zabezpieczyć na usunięcie spodziewanych szkód górniczych.
This paper presents a methodology that allows to determine the risk of mining damage in buildings of conventional brickwork in the case of strong mining tremors. The basis for the analysis was the database on notifications of damage occurring after the upheavals of 20 February 2002, 16 May 2004 and 21 May 2006 (LGOM – Polkowice). Based on these data classification a model in the form of a probabilistic neural network (PNN) was developed. Basing on the results of the previous papers, the model includes structural and geometric characteristics of the buildings and their protection against mining tremors. The probability of damage at a given set of input variables can be indicated owing to the obtained classifier. An efficient way to estimate the probability of damage in the analysis of large groups of buildings located in the area of paraseismic interaction can be obtained by the use of a probabilistic notation model. Due to PNN the financing costs of removing the anticipated mining damage can be estimated with an appropriate probability.
Źródło:
Przegląd Górniczy; 2017, 73, 1; 44-47
0033-216X
Pojawia się w:
Przegląd Górniczy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Some improvements in the reinforcement learning of a mobile robot
Uczenie ze wzmocnieniem robotów mobilnych - propozycje usprawnień
Autorzy:
Pluciński, M.
Powiązania:
https://bibliotekanauki.pl/articles/153411.pdf
Data publikacji:
2010
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
uczenie ze wzmocnieniem
sieci neuronowe RBF
roboty mobilne
reinforcement learning
probabilistic RBF neural network
mobile robot
Opis:
The paper presents application of the reinforcement learning to autonomous mobile robot moving learning in an unknown, stationary environment. The robot movement policy was represented by a probabilistic RBF neural network. As the learning process was very slow or even impossible for complicated environments, there are presented some improvements, which were found out to be very effective in most cases.
W artykule zaprezentowane jest zastosowanie uczenia ze wzmocnieniem w poszukiwaniu strategii ruchu autonomicznego robota mobilnego w nieznanym, stacjonarnym środowisku. Zadaniem robota jest dotarcie do zadanego i znanego mu punktu docelowego jak najkrótszą drogą i bez kolizji z przeszkodami. Stan robota określa jego położenie w stałym (związanym ze środowiskiem) układzie współrzędnych, natomiast akcja wyznaczana jest jako zadany kierunek ruchu. Strategia robota zdefiniowana jest pośrednio za pomocą funkcji wartości, którą reprezentuje sztuczna sieć neuronowa typu RBF. Sieci tego typu są łatwe w uczeniu, a dodatkowo ich parametry umożliwiają wygodną interpretację realizowanego odwzorowania. Ponieważ w ogólnym przypadku uczenie robota jest bardzo trudne, a w skomplikowanych środowiskach praktycznie niemożliwe, stąd w artykule zaprezentowanych jest kilka propozycji jego usprawnienia. Opisane są eksperymenty: z wykorzystaniem ujemnych wzmocnień generowanych przez przeszkody, z zastosowaniem heurystycznych sposobów podpowiadania robotowi właściwych zachowań w "trudnych" sytuacjach oraz z wykorzystaniem uczenia stopniowego. Badania wykazały, że najlepsze efekty uczenia dało połączenie dwóch ostatnich technik.
Źródło:
Pomiary Automatyka Kontrola; 2010, R. 56, nr 12, 12; 1470-1473
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Developing an Intelligent Model for the Construction a Hip Shape Recognition System Based on 3D Body Measurement
Opracowanie inteligentnego modelu dla rozpoznania konstrukcji kształtu bioder
Autorzy:
Jin, J.-F.
Yang, Y.-C.
Zou, F.-Y.
Powiązania:
https://bibliotekanauki.pl/articles/234324.pdf
Data publikacji:
2016
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
intelligent recognition system
probabilistic neural network
classification accuracy
feature reduction
typical index
cluster analysis
inteligentny system rozpoznawania
sieć neuronowa
dokładność klasyfikacji
funkcja redukcji
typy kształtu bioder
Opis:
The purpose of this paper was to develop an intelligent recognition system consisting of a feature reduction method combining cluster and correlation analyses, and a probabilistic neural network (PNN) classifier to identify different types of hip shape from 3D measurement for each person. Firstly 28 items reflecting lower body part information of 300 female university students aging from 20 to 24 years were selected. The feature reduction method was employed to extract typical indices. Secondly hip shapes were subdivided into five types by a K-means cluster and analysis of variance (ANOVA). Finally the PNN was then trained to serve as a classifier for identifying five different hip shape types. The average classification accuracy of the scheme proposed was 97.37%, and its effectiveness was successfully validated by comparing with the BP and Support Vector Machine (SVM) scheme. Thus an intelligent recognition system was developed to make hip shape type classification of high-precision and time saving.
Model łączy analizę skupień i korelacji oraz probabilistyczną sztuczną sieć neuronową dla identyfikacji różnych typów kształtów bioder opartą o pomiary 3D poszczególnych osób. Wyselekcjonowano 28 przypadków odzwierciedlających dolną część sylwetki 300 studentek w wieku od 20 do 24 lat. Zastosowano metodę redukcji poszczególnych właściwości dla wybrania typowych wskaźników. Następnie kształt bioder podzielono na 5 typów za pomocą algorytmu klastrowego i systemu ANOVA (analiza wariancji). Następnie przeprowadzono trening sieci neuronowej aby mogła posłużyć jako klasyfikator identyfikacji 5 różnych kształtów bioder. Przeciętna dokładność klasyfikacji proponowanego systemu wynosiła 97,37%, a efektywność była sukcesywnie sprawdzana przez porównanie schematów BP i SVM. W ten sposób stworzono inteligentny system rozpoznania typu kształtu bioder o dużej precyzji, pozwalający na oszczędność czasu.
Źródło:
Fibres & Textiles in Eastern Europe; 2016, 5 (119); 110-118
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-11 z 11

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies