Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "probabilistic modeling" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Reliability analysis of multi-site damage with failure dependency of the turbine based on flow-thermal-solid coupling analysis and the Monte Carlo validated simulations
Autorzy:
Qian, Wenxue
Zeng, Xianhai
Huang, Shuanghui
Yin, Xiaowei
Powiązania:
https://bibliotekanauki.pl/articles/27312780.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
flow-thermal-solid coupling analysis
Monte Carlo simulation
turbine disk
multiple loads
probabilistic modeling
system reliability with failure dependency
Opis:
The harsh environmental loads may lead to strength failure in the turbine in an aero-engine. To accurately assess the strength reliability of the turbine under multiple loads, the stress distributions of 41 danger sites of a turbine under thermal, centrifugal, and pneumatic loads were determined by the flow-thermal-solid coupling analysis using ANSYS. Second, based on the flow-thermal-solid coupling analysis and response surface method, the probabilistic analysis model of stress at the danger site was established. And the probabilistic distribution of stress was determined by sampling and hypothesis testing. Finally, the reliability model of the turbine with multi-site damage and failure dependency was established, by which a reliability of 0.99802 was calculated. And the actual reliability of the turbine was 0.99626 determined by the Monte Carlo simulations, which verified the model in precision. The results indicated that the reliability model has a high efficiency and higher precision than the traditional reliability model with failure independence.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 168771
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On a risk perspective for maritime domain
Autorzy:
Montewka, J.
Goerlandt, F.
Kujala, P.
Powiązania:
https://bibliotekanauki.pl/articles/2069356.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
maritime traffic
probabilistic modeling
risk analysis
risk management
decision making
Opis:
In the maritime domain, the risk is evaluated within the framework of Formal Safety Assessment (FSA), introduced by International Maritime Organization in 2002. Although the FSA has become internationally recognized and recommended method, the definition, which is adopted there, to describe the risk, seems to be too narrow to reflect properly the actual content of the FSA. Therefore this article discusses methodological requirements for the risk perspective, which is appropriate for risk management in the maritime domain with the special attention to maritime transportation systems (MTS). This perspective considers risk as a set encompassing the following: the set of plausible scenarios leading to an accident, the likelihoods of the unwanted events within the scenarios and the consequences of the events. These elements are conditional upon the available knowledge about the analyzed system, and understanding of the system behaviour, therefore these two are inherent parts of risk analysis, and need to be included in the risk description.
Źródło:
Journal of Polish Safety and Reliability Association; 2013, 4, 1; 101--108
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A simple tool for evaluating the risks related to hazardous interactions between the processes realized in the Baltic Sea Region port areas
Autorzy:
Malinowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/2068756.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
probabilistic modeling
hazardous
harmful or catastrophic events
processes interaction
cascading effect
risk calculation
Opis:
This paper is a continuation of [1] which presents a probabilistic model of hazard-related interactions between different operations carried out in a (generic) Baltic Sea Region port area. Each such operation, considering its hazardous aspect, is defined as a series of undesired events (emergencies and/or accidents) occurring at random instants, i.e. as a random process. An event can be primary (occurring by itself) or secondary (caused by another event in the same or another process). The processes interact in the sense that a primary event in one process can cause a cascade of events spanning multiple processes. In [1] the formulas were derived for the cause-effect probabilities expressing the impact of a single event on the occurrence of the ensuing events in the triggered cascade. Also, the formulas for risks of undesired events, using these probabilities, were obtained. As these formulas are complicated and difficult to implement numerically, the need arose to develop a simple tool for computing the considered risks. Such a tool, in the form of an easy-toimplement algorithm, along with an illustrative example is presented in the current work.
Źródło:
Journal of Polish Safety and Reliability Association; 2018, 9, 3; 39--46
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling hazard-related interactions between the processes realized in and around the Baltic Sea Region ports
Autorzy:
Malinowski, J.
Powiązania:
https://bibliotekanauki.pl/articles/2068894.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
probabilistic modeling
hazard-related events
processes interaction
cascading effect
risk calculation
Opis:
This paper presents a probabilistic model of hazard-related interdependence between the operations carried out in the ports of the Baltic Sea region and in their neighborhoods. Each single operation, considered w.r.t. its hazardous aspect, will be defined as a point process consisting of undesired events (emergencies and/or accidents). Thus, the interdependence between these processes can be regarded as interaction between such events. The developed model will specify the impact of hazard related events occurring within one process on the risk of occurrence of such events in the other processes. This model will be a basis for the analysis of inter-process dependencies, including the feedback and cascading effects, as implied by the cause-effect relationships between the events occurring in different processes. Furthermore, it is envisaged to be used for assessing the potential effects of accidents or catastrophic events, and for developing the appropriate prevention measures. The procedures derived from the model will be applied to analyzing the mutual impacts between the processes realized in the oil and container terminals, forecasting negative effects of these impacts along with assessing their costs, and planning preventive actions aimed at avoiding such effects.
Źródło:
Journal of Polish Safety and Reliability Association; 2017, 8, 1; 87--96
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling vessel passage speed by using passage-time in restricted areas
Autorzy:
Kasyk, L.
Kijewska, M.
Powiązania:
https://bibliotekanauki.pl/articles/135683.pdf
Data publikacji:
2018
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
traffic speed
vessel passage speed
traffic time
vessel passage time
vessel traffic stream
probabilistic modeling
probabilistic distribution
inverse random variable
restricted areas
fairway
maritime transport
Opis:
Vessel passage speed is one of the parameters describing the vessel traffic stream on a selected waterway. Knowing the probability distribution of vessel passage speeds is essential for modeling vessel traffic streams on a waterway. This article undertakes probabilistic modeling for vessel speeds in restricted areas, where the distribution of the vessel passage time of the waterway section is known. The probabilistic procedure of the inverse random variable is used. Four different cases are considered. First, the probabilistic distribution of the vessel passage speed is given, where the vessel passage time is described by the normal distribution in certain restricted areas. The next three cases present the probabilistic distribution of vessel passage speeds on the Szczecin–Świnoujście fairway, where the vessel passage time is described by the extreme value distribution, the Frèchet distribution and the Weibull distribution.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2018, 54 (126); 63-69
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Data Forecasting and Extrapolation via Probability Distribution and Nodes Combination
Autorzy:
Jakóbczak, D. J.
Powiązania:
https://bibliotekanauki.pl/articles/118343.pdf
Data publikacji:
2015
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
information retrieval
data extrapolation
curve interpolation
PNC method
probabilistic modeling
forecasting
wyszukiwanie informacji
ekstrapolacja danych
interpolacja krzywej
metoda PNC
modelowanie probabilistyczne
prognozowanie
Opis:
Proposed method, called Probabilistic Nodes Combination (PNC), is the method of 2D data interpolation and extrapolation. Nodes are treated as characteristic points of information retrieval and data forecasting. PNC modeling via nodes combination and parameter γ as probability distribution function enables 2D point extrapolation and interpolation. Two-dimensional information is modeled via nodes combination and some functions as continuous probability distribution functions: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function. Extrapolated values are used as the support in data forecasting.
Autorska metoda Probabilistycznej Kombinacji Węzłów- Probabilistic Nodes Combination (PNC) jest wykorzystywana do interpolacji i ekstrapolacji dwuwymiarowych danych. Węzły traktowane są jako punkty charakterystyczne informacji, która ma być odtwarzana lub przewidywana. Dwuwymiarowe dane są interpolowane lub ekstrapolowane z wykorzystaniem różnych funkcji rozkładu prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, cyklometrycznych. W pracy pokazano propozycję metody ekstrapolowania danych jako pomoc w przewidywaniu trendu dla nieznanych wartości.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2015, 8; 25-37
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reconstruction of high-dimensional data using the method of probabilistic features combination
Autorzy:
Jakóbczak, D. J.
Powiązania:
https://bibliotekanauki.pl/articles/118528.pdf
Data publikacji:
2016
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
image retrieval
pattern recognition
data modeling
vector interpolation
PFC method
feature reconstruction
probabilistic modeling
pobieranie obrazu
rozpoznawanie wzorców
modelowanie danych
interpolacja wektora
metoda PFC
funkcja rekonstrukcji
modelowanie probabilistyczne
Opis:
Proposed method, called Probabilistic Features Combination (PFC), is the method of multi-dimensional data modeling, extrapolation and interpolation using the set of high-dimensional feature vectors. This method is a hybridization of numerical methods and probabilistic methods. Identification of faces or fingerprints need modeling and each model of the pattern is built by a choice of multi-dimensional probability distribution function and feature combination. PFC modeling via nodes combination and parameter γ as N-dimensional probability distribution function enables data parameterization and interpolation for feature vectors. Multidimensional data is modeled and interpolated via nodes combination and different functions as probability distribution functions for each feature treated as random variable: polynomial, sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot or power function.
Autorska metoda Probabilistycznej Kombinacji Cech - Probabilistic Features Combination (PFC) jest wykorzystywana do interpolacji i modelowania wielowymiarowych danych. Węzły traktowane są jako punkty charakterystyczne N-wymiarowej informacji, która ma być odtwarzana (np. obraz). Wielowymiarowe dane są interpolowane lub rekonstruowane z wykorzystaniem funkcji rozkładu prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, logarytmicznych, trygonometrycznych, cyklometrycznych.
Źródło:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej; 2016, 9; 37-50
1897-7421
Pojawia się w:
Zeszyty Naukowe Wydziału Elektroniki i Informatyki Politechniki Koszalińskiej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistic model for flexural strength of dental composites used in modeling reliability of the “tooth-dental composite” system
Probabilistyczny model wytrzymałości na zginanie kompozytów stomatologicznych w zastosowaniu do modelowania niezawodności układów "ząb – kompozyt stomatologiczny"
Autorzy:
Bartnik, G.
Pieniak, D.
Niewczas, A. M.
Marciniak, A.
Powiązania:
https://bibliotekanauki.pl/articles/1365809.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
probabilistic modeling
reliability of tooth-dental composite system
dental composites
flexural strength
modelowanie probabilistyczne
niezawodność układów ząb-kompozyt stomatologiczny
kompozyty stomatologiczne
wytrzymałość na zginanie
Opis:
In the article the application of Bayesian probabilistic modeling was presented as a way to standardize analytics of measurement results, which completes the operational and procedural standardization of determining the strength of dental composites. The traditional way of conducting studies of strength performed as services and calculations, and which do not refer to previous studies, was changed into an adaptation process of knowledge accumulation in a form of an increasing precise models. Probabilistic flexural strength models were used to create a reliability ranking of studied dental composites. Conceptualization of reliability of a biotechnological system, such as a “tooth-dental composite” required the expansion of the notion of“failure” with random events involving the occurrence of compatibility failure.
W pracy przedstawiono zastosowanie bayesowskiego modelowania probabilistycznego jako sposobu standaryzacji opracowania wyników pomiarów, uzupełniającego standaryzację operatorowo – proceduralną wyznaczania wytrzymałości kompozytów stomatologicznych. Tradycyjny sposób prowadzenia badań wytrzymałościowych, wykonywanych usługowo i obliczeniowo nienawiązujących do badań poprzednich, zmieniono w adaptacyjny proces kumulacji wiedzy w postaci coraz dokładniejszych modeli. Probabilistyczne modele wytrzymałości na zginanie wykorzystano do utworzenia rankingu niezawodnościowego badanych kompozytów stomatologicznych. Konceptualizacja niezawodności układów biotechnologicznych takich jak „ząb – wypełnienie stomatologiczne” wymagała rozszerzenia zakresu pojęcia uszkodzenie o losowe zdarzenia polegające na zaistnieniu niezgodności pomiędzy komponentami układu biotechnologicznego (compability failure).
Źródło:
Eksploatacja i Niezawodność; 2016, 18, 1; 136-141
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Probabilistic models reliability of information and control systems
Autorzy:
Al-Ammouri, A.
Al-Ammori, H.
Klochan, A.
Degtiarova, A.
Powiązania:
https://bibliotekanauki.pl/articles/2140899.pdf
Data publikacji:
2018
Wydawca:
Fundacja Centrum Badań Socjologicznych
Tematy:
information and control system
mathematical modeling
Markov process
probabilistic model
reliability
optimal maintenance operation term
transportation processes
Opis:
The paper deal with devoting the problem of reliability prediction and modeling the functioning process of information and control systems (ICS), which are described by the Markov random process. The methodology of the study consist in considering ICS as Markov systems. Modeling the functioning process of information and control systems will increase authenticity and reliability of information from the ICS, as well as improve the efficiency of its work. As an example, the mathematical model of the functioning the computer system of the dispatch service is constructed in the paper. Mathematical modeling was conducted in the environment of MathCad. Mathematical modeling allows determining the average number of steps before system moves into the absorbing state. Taking into account the length of stay the system in each condition allows determining the average life of the system until the full failure. The development of model and technology for calculating the characteristics of stochastic systems allows investigating a wide class of such systems and determining optimal maintenance operation term in order to ensure reliability and reduce the waste on downtime.
Źródło:
Journal of Sustainable Development of Transport and Logistics; 2018, 3, 1; 60-69
2520-2979
Pojawia się w:
Journal of Sustainable Development of Transport and Logistics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies