Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "prior model" wg kryterium: Temat


Wyświetlanie 1-9 z 9
Tytuł:
Generalized Bayes Estimation of Spatial Autoregressive Models
Autorzy:
Chaturvedi, Anoop
Mishra, Sandeep
Powiązania:
https://bibliotekanauki.pl/articles/1194464.pdf
Data publikacji:
2019-07-02
Wydawca:
Główny Urząd Statystyczny
Tematy:
spatial autoregressive model
prior and posterior distributions
generalized Bayes estimator
admissibility and minimaxity
total fertility rate (TFR)
Opis:
The spatial autoregressive (SAR) models are widely used in spatial econometrics for analyzing spatial data involving spatial autocorrelation structure. The present paper derives a Generalized Bayes estimator for estimating the parameters of a SAR model. The admissibility and minimaxity properties of the estimator have been discussed. For investigating the finite sample behaviour of the estimator, the results of a simulation study have been presented. The results of the paper are applied to demographic data on total fertility rate for selected Indian states.
Źródło:
Statistics in Transition new series; 2019, 20, 2; 15-31
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Can conjugate prior probability explain the illusion of control?
Autorzy:
Czupryna, Marcin
Kubińska, Elżbieta
Markiewicz, Łukasz
Powiązania:
https://bibliotekanauki.pl/articles/1198684.pdf
Data publikacji:
2018
Wydawca:
Akademia Leona Koźmińskiego w Warszawie
Tematy:
overconfidence
illusion of control
emotional and rational model
Bayesian updating
conjugate prior probability.
Opis:
In this paper, we consider the illusion of control by using Bayesian updating as the rationality model. Our paper contributes twofold. First, we empirically verify that the illusion of control may have two concurrent sources, “emotional” and “rational”. The fi rst one produces biased Bayesian processing due to emotional engagement and the second one yields biases due to prior assumptions on the level of control. Second, we propose a method for identifying these two sources. Moreover we verified two hypotheses H1: The emotional factor causes overestimation of the actual level of control. and H2: The rational factor is responsible for the reverse relationship between observed levels of the illusion of control in three separate situations, when subjects have significant control, moderate or no control. Only the hypothesis H2 received partial empirical support.
Źródło:
Decyzje; 2018, 29; 87-113
1733-0092
2391-761X
Pojawia się w:
Decyzje
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial and temporal aspects of prior and likelihood data choices for Bayesian models in road traffic safety analyses
Przestrzenny i czasowy aspekt wyboru rozkładów apriorycznych i danych dla funkcji wiarygodności dla modeli bayesowskich w analizach bezpieczeństwa ruchu drogowego
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/1365610.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
Bayesian regression model
informative prior distributions for model parameters
likelihood data
statistical classifier
road accident severity
road accident features
model regresji bayesowskiej
informatywne rozkłady aprioryczne parametrów modelu
wiarygodność bayesowska
klasyfikator statystyczny
status wypadku drogowego
cechy wypadku drogowego
Opis:
In a Bayesian regression model, parameters are not constants, but random variables described by some posterior distributions. In order to define such a distribution, two pieces of information are combined: (1) a prior distribution that represents previous knowledge about a model parameter and (2) a likelihood function that updates prior knowledge. Both elements are analysed in terms of implementing the Bayesian approach in road safety analyses. A Bayesian multiple logistic regression model that classifies road accident severity is investigated. Three groups of input variables have been considered in the model: accident location characteristics, at fault driver’s features and accident attributes. Since road accidents are scattered in space and time, two aspects of information source choices in the Bayesian modelling procedure are proposed and discussed: spatial and temporal ones. In both aspects, priors are based on selected data that generate background knowledge about model parameters – thus, prior knowledge has an informative property. Bayesian likelihoods which modify priors are data that deliver: (1) information specific to a road – in the spatial aspect or (2) the latest information – in the temporal aspect. The research experiments were conducted to illustrate the approach and some conclusions have been drawn.
Parametry bayesowskiego modelu regresji nie są wartościami stałymi tylko zmiennymi losowymi opisanymi przez pewne rozkłady aposterioryczne. W celu zdefiniowania takiego rozkładu łączy się dwa źródła informacji: (1) rozkład aprioryczny, który reprezentuje wcześniejszą wiedzę o parametrze modelu oraz (2) funkcję wiarygodności (wiarygodność bayesowską), która uaktualnia wiedzę a’priori. Oba te elementy są przedmiotem badań w kontekście wykorzystania podejścia bayesowskiego w analizach bezpieczeństwa ruchu drogowego. Badaniom podlega model wielokrotnej regresji logistycznej, który klasyfikuje status zdarzenia drogowego. W modelu uwzględniono trzy grupy zmiennych objaśniających: charakterystyki miejsca lokalizacji wypadku, cechy kierującego sprawcy oraz atrybuty wypadku. Ponieważ wypadki drogowe są rozproszone w czasie i przestrzeni, zaproponowano i poddano dyskusji dwa aspekty wyboru źródeł informacji w procedurze modelowania bayesowskiego: czasowy i przestrzenny. W obu podejściach rozkłady aprioryczne są definiowane na podstawie danych wybranych jako te, które generują uogólnioną wiedzę o parametrach modelu, tworząc tło podlegające modyfikacji – w ten sposób wiedza aprioryczna ma cechę informatywności. Wiarygodność bayesowska, modyfikująca rozkłady a’priori, jest definiowana za pomocą danych wprowadzających: (1) informację specyficzną dla wybranej drogi – w przypadku aspektu przestrzennego lub (2) informację najnowszą – w przypadku aspektu czasowego. Zaproponowane podejście zilustrowano w eksperymentach badawczych i przedstawiono wynikające z nich wnioski.
Źródło:
Eksploatacja i Niezawodność; 2017, 19, 1; 68-75
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modele regresji Bayesa w analizach bezpieczeństwa ruchu drogowego
Bayesian regression models in the analyses of road traffic safety
Autorzy:
Nowakowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/144202.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Komunikacji Rzeczpospolitej Polskiej
Tematy:
Bayesian regression
regresja Bayesa
aprioryczne rozkłady parametrów modelu
klasyfikator statystyczny
ciężkość wypadku drogowego
kierujący sprawca wypadku
model parameters prior distributions
statistical classifier
road accident severity
at fault driver
Opis:
W artykule przybliżono koncepcję modelu regresji Bayesa oraz przedstawiono wykorzystanie tego modelu w budowaniu statystycznego klasyfikatora ciężkości wypadku drogowego w zależności od cech kierującego – sprawcy. Modele Bayesa zostały wyznaczone na dużej i małej próbie treningowej z uwzględnieniem informatywnych i nieinformatywnych rozkładów a’priori parametrów strukturalnych oraz porównane z analogicznymi modelami klasycznymi MLE. Przedmiotowym klasyfikatorem statystycznym był model regresji logistycznej.
The idea of a Bayes regression model was put forward and then the utilization of such a model while building a statistical classifier to identify a road accident severity in dependence on chosen at fault driver’s characteristics was presented in the paper. Bayes models were identified for small and big train samples assuming informative and non-informative prior distributions for structural parameters of the models. Obtained results were compared and referred to the results of classical MLE models. A logistic model was a statistical classifier under consideration.
Źródło:
Drogownictwo; 2016, 2; 39-45
0012-6357
Pojawia się w:
Drogownictwo
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty praktyczne
An Estimated General Equilibrium Model and Vector Autoregression. Practical Issues
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/423053.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
brzegowa gęstość obserwacji
specyfikacja rozkładu a priori
zbieżność MCMC
dynamic stochastic general equilibrium model
Bayesian inference
marginal data density
prior specification
convergence diagnostics of MCMC
Opis:
Model DSGE-VAR składa się z dwóch modeli wektorowej autoregresji: pierwszy z nich jest aproksymacją liniowego rozwiązania estymowanego modelu równowagi ogólnej i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Opracowanie jest poświęcone szczegółowemu omówieniu aspektów praktycznych, zawiązanych z modelami DSGE-VAR. Główny nacisk został położony na zagadnienia specyfikacji a priori dla parametru wagowego: rozpatrzono szereg modeli warunkowych oraz modele z estymowanym parametrem wagowym, po przyjęciu alternatywnych rozkładów a priori: jednostajnego, przesuniętego gamma i zmodyfikowanego rozkładu beta. Oszacowanie szeregu modeli warunkowych pozwala na ujawnienie znacznej zmienności logarytmu brzegowej gęstości obserwacji implikujących wrażliwość czynników Bayesa, istotnie zmieniających się w odpowiedzi na niewielkie zmiany specyfikacji rozkładu a priori dla parametru wagowego. Estymacja modelu pełnego pozwala na optymalne ustalenie rzędu opóźnienia wektorowej autoregresji oraz sprawdzenie wrażliwości wnioskowania a posteriori o parametrze wagowym w zależności od typu i rozproszenia rozkładu a priori. W drugiej części opracowania omówiono sposoby oceny stabilności numerycznej w modelach DSGE-VAR.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates the linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. The main purpose of the paper is to present practical aspects of DSGE-VAR estimation, verification and comparison, based on the marginal data density. It can be obtained after considering conditional models or by estimation of fully specified models, after assuming uniform, generalised gamma and modified beta distributions. The conditional models lead to serious variability of the Bayes factors that has little economic interpretation. Posterior inference for the weighting parameter from fully estimated models is less sensitive to its prior specification. In the second part of the paper author discusses convergence diagnostics used for checking stability of MCMC algorithms.
Źródło:
Przegląd Statystyczny; 2013, 60, 4; 477-498
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estymowane modele równowagi ogólnej i autoregresja wektorowa. Aspekty teoretyczne
An Estimated General Equilibrium Model and Vector Autoregression. Theoretical Aspects
Autorzy:
Wróbel-Rotter, Renata
Powiązania:
https://bibliotekanauki.pl/articles/422792.pdf
Data publikacji:
2013
Wydawca:
Główny Urząd Statystyczny
Tematy:
DSGE-VAR
dynamiczny stochastyczny model równowagi ogólnej
wnioskowanie bayesowskie
specyfikacja rozkładu a priori
dynamic stochastic general equilibrium model
Bayesian inference
prior specification
Opis:
Model DSGE-VAR składa się z dwóch modeli autoregresji wektorowej: pierwszy z nich, pomocniczy, jest aproksymacją estymowanego modelu równowagi ogólnej, zapisanego w formie reprezentacji w przestrzeni stanów, i służy konstrukcji rozkładu a priori dla drugiego, szacowanego dla danych obserwowanych. Łączne wnioskowanie o parametrach modelu strukturalnego i autoregresyjnego jest możliwe po zbudowaniu odpowiednich rozkładów prawdopodobieństwa, stanowiących podstawę metod bayesowskich. Kluczową rolę pełni parametr wagowy, ustalający optymalne proporcje obydwu podejść i mający zasadnicze znaczenie dla oszacowania brzegowej gęstości obserwacji, stanowiącej podstawę do porównań mocy wyjaśniającej modeli. Artykuł stanowi syntezę informacji teoretycznych związanych z metodologią DSGE-VAR, i może być traktowany jako etap wstępny i wprowadzający w badania empiryczne.
The DSGE-VAR model consists of two models of vector autoregressions: the first one approximates linearised solution of the dynamic stochastic general equilibrium model and is used as a tool for construction of a prior distribution for the second one, estimated with the observed data. Combined inference is possible on the basis on probability distributions with the Bayesian techniques. The key role in the hybrid model is played by the weighting parameter that defines the relative proportions of the structural and autoregressive models. It has crucial impact for the marginal data density that allows to compare the power of different models. The main purpose of the paper is to present in details model assumptions and estimation.
Źródło:
Przegląd Statystyczny; 2013, 60, 3; 359-380
0033-2372
Pojawia się w:
Przegląd Statystyczny
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian approach to shipping reliability and safety
Autorzy:
Smolarek, L.
Powiązania:
https://bibliotekanauki.pl/articles/2069249.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Morski w Gdyni. Polskie Towarzystwo Bezpieczeństwa i Niezawodności
Tematy:
reliability
safety
shipping
hierarchical Bayes model
prior model
Opis:
In a Bayesian approach, there are two main sources of information about parameters of interest such as prior beliefs or the prior distribution of the parameter and the likelihood of observing the data given our expectations about the parameter. The prior distribution may be based on previous studies, literature reviews or expert opinions and indicates how we believe the parameter would behave if we had no data upon which to base our judgments. In case where we have less data, the prior has greater influence. The maximum likelihood estimate predominates only when we have a lot of data. The posterior distribution is the result of combining the prior distribution and the likelihood. In the paper the examples of using Bayes approach to shipping operational reliability and safety is presented.
Źródło:
Journal of Polish Safety and Reliability Association; 2012, 3, 2; 227--236
2084-5316
Pojawia się w:
Journal of Polish Safety and Reliability Association
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On an Improvement of the Model-Based Clustering Method
O pewnej modyfikacji w metodzie taksonomii opartej na modelach mieszanych
Autorzy:
Witek, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/906293.pdf
Data publikacji:
2009
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
Model-based clustering (MBC)
Gaussian mixture models
EM algorithm
MLE
MAP
BIC
conjugate prior
Opis:
W artykule przedstawiona została modyfikacja metody taksonomii opartej na modelach mieszanych, w przypadku gdy niemożliwym staje się oszacowanie parametrów modelu za pomocą algorytmu EM. Gdy liczba obiektów przypisanych do klasy jest mniejsza niż liczba zmiennych opisujących te obiekty, niemożliwym staje się oszacowanie parametrów modelu. By uniknąć tej sytuacji estymatory największej wiarygodności zastępowane są estymatorami o największym prawdopodobieństwie a posteriori. Wybór modelu o najlepszej parametryzacji i stosownej liczbie klas dokonywany jest wówczas za pomocą zmodyfikowanej statystyki BIC.
An improvement o f the model-based clustering (MBC) method in the case when EM algorithm fails as a result o f singularities is the basic aim o f this paper. Replacement o f the maximum likelihood (MLE) estimator by a maximum a posteriori (MAP) estimator, also found by the EM algorithm is proposed. Models with different number o f components are compared using a modified version o f BIC, where the likelihood is evaluated at the MAP instead o f MLE. A highly dispersed proper conjugate prior is shown to avoid singularities, but when these are not present it gives similar results to the standard method o f MBC.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2009, 228
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian estimation of AR(1) models with uniform innovations
Autorzy:
Fellag, Hocine
Nouali, Karima
Powiązania:
https://bibliotekanauki.pl/articles/729720.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
autoregressive model
Bayesian estimator
prior distribution
uniform distribution
Opis:
The first-order autoregressive model with uniform innovations is considered. In this paper, we propose a family of BAYES estimators based on a class of prior distributions. We obtain estimators of the parameter which perform better than the maximum likelihood estimator.
Źródło:
Discussiones Mathematicae Probability and Statistics; 2005, 25, 1; 71-75
1509-9423
Pojawia się w:
Discussiones Mathematicae Probability and Statistics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-9 z 9

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies