Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "predykcja szeregów czasowych" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Data mining workspace as an optimization prediction technique for solving transport problems
Решение задачи прогнозирования в транспортной отрасли с помощью методов data mining
Autorzy:
Kuptcova, A.
Průša, P.
Federko, G.
Molnár, V.
Powiązania:
https://bibliotekanauki.pl/articles/375552.pdf
Data publikacji:
2016
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
time series prediction
data mining
neural network
modelling
predykcja szeregów czasowych
eksploracja danych
sieć neuronowa
modelowanie
Opis:
This article addresses the study related to forecasting with an actual high-speed decision making under careful modelling of time series data. The study uses data-mining modelling for algorithmic optimization of transport goals. Our finding brings to the future adequate techniques for the fitting of a prediction model. This model is going to be used for analyses of the future transaction costs in the frontiers of the Czech Republic. Time series prediction methods for the performance of prediction models in the package of Statistics are Exponential, ARIMA and Neural Network approaches. The primary target for a predictive scenario in the data mining workspace is to provide modelling data faster and with more versatility than the other management techniques.
В данной статье рассматривается задача прогнозирования временных рядов, которая заключается в построении модели для предсказания будущих событий. В исследовании используются методы интеллектуального анализа данных. Модель прогнозирования позволяет адекватно оценивать исследуемый процесс. Целью исследования является изучение динамики расходов при реализации экспортной продукции. Прогнозирование осуществляется с помощью ARIMA-модели, на основе метода экспоненциального сглаживания и по технологии логической нейронной сети. Построение базового и быстрого сценария прогнозирования является важным и ответственным этапом в научной деятельности.
Źródło:
Transport Problems; 2016, 11, 3; 21-31
1896-0596
2300-861X
Pojawia się w:
Transport Problems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Collectively intelligent prediction in evolutionary multi-agent system
Autorzy:
Kijak, J.
Martyna, P.
Byrski, A.
Faber, Ł.
Piętak, K.
Kisiel-Dorohinicki, M.
Powiązania:
https://bibliotekanauki.pl/articles/397728.pdf
Data publikacji:
2017
Wydawca:
Politechnika Łódzka. Wydział Mikroelektroniki i Informatyki
Tematy:
evolutionary neural networks
agent-based computing
time series prediction
collective intelligence
metaheuristic optimization
ewolucyjne sieci neuronowe
obliczenia agentowe
predykcja szeregów czasowych
inteligencja zbiorowa
optymalizacja metaheurystyczna
Opis:
In the paper a summary of our previously realized and published work connected with constructing collective intelligent evolutionary multi-agent systems for time series prediction, based on multi-layered perceptrons is shown. Besides recalling our past papers, we describe the whole concept, present an implementation in a contemporary, componentoriented software framework AgE 3.0 and we conduct a number of experiments, finding different optimal parametrization for the considered instances of the problems (popular Mackey-Glass chaotic time series). The paper may be useful for a practitioner willing to use our meatheuristic algorithm (EMAS) along with the idea of collective agent-based system in order to realize prediction tasks.
Źródło:
International Journal of Microelectronics and Computer Science; 2017, 8, 3; 85-96
2080-8755
2353-9607
Pojawia się w:
International Journal of Microelectronics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies