Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "polynomial matrix equation" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
The Relationship Between the Infinite Eigenvalue Assignment for Singular Systems and the Solvability of Polynomial Matrix Equations
Autorzy:
Kaczorek, T.
Powiązania:
https://bibliotekanauki.pl/articles/908199.pdf
Data publikacji:
2003
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automatyka
robotyka
assignment
infinite eigenvalue
singular
polynomial matrix equation
system
reliationship
Opis:
Two related problems, namely the problem of the infinite eigenvalue assignment and that of the solvability of polynomial matrix equations are considered. Necessary and sufficient conditions for the existence of solutions to both the problems are established. The relationships between the problems are discussed and some applications from the field of the perfect observer design for singular linear systems are presented.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2003, 13, 2; 161-167
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and Computation of the Set of Positive Solutions to Polynomial Matrix Equations
Autorzy:
Kaczorek, T.
Łopatka, R.
Powiązania:
https://bibliotekanauki.pl/articles/911183.pdf
Data publikacji:
2000
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
obliczanie
równanie macierzowe
computation
set of positive solutions
polynomial matrix equation
Opis:
Necessary and sufficient conditions are established for the existence of positive solutions to polynomial diophatine equations. A method of computing of the set of positive solutions to a polynomial diophatine equation based on extreme points and extreme directions is proposed. The effectiveness of the method is demonstrated on a numerical example.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2000, 10, 2; 309-320
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Computer methods for calculating tuple solutions of polynomial matrix equations
Autorzy:
Dorożyński, J.
Nedashkovskyy, M.
Powiązania:
https://bibliotekanauki.pl/articles/200783.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
matrix polynomial equations
discrete (time) Riccati equation
tuples of solutions
MATLAB
Opis:
Schemes are presented for calculating tuples of solutions of matrix polynomial equations using continued fractions. Despite the fact that the simplest matrix equations were solved in the second half of the 19th century, and the problem of multiplier decomposition was then deeply analysed, many tasks in this area have not yet been solved. Therefore, the construction of computer schemes for calculating the sequences of solutions is proposed in this work. The second-order matrix equations can be solved by a matrix chain function or iterative method. The results of the numerical experiment using the MatLab package for a given number of iterations are presented. A similar calculation is done for a symmetric square matrix equation of the 2nd order. Also, for the discrete (time) Riccati equation, as its analytical solution cannot be performed yet, we propose constructing its own special scheme of development of the solution in the matrix continued fraction. Next, matrix equations of the n-th order, matrix polynomial equations of the order of non-canonical form, and finally, the conditions for the termination of the iterative process in solving matrix equations by branched continued fractions and the criteria of convergence of matrix branching chain fractions to solutions are discussed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2020, 68, 2; 235-243
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies