- Tytuł:
-
Zastosowanie sztucznych sieci neuronowych Kohonena do prognozowania dobowego poboru wody.
Application of Kohonen Artificial Neural Networks to the Prediction of Daily Water Consumption. - Autorzy:
-
Licznar, P.
Łomotowski, J. - Powiązania:
- https://bibliotekanauki.pl/articles/237690.pdf
- Data publikacji:
- 2006
- Wydawca:
- Polskie Zrzeszenie Inżynierów i Techników Sanitarnych
- Tematy:
-
dobowy pobór wody
prognozowanie
sieci neuronowe Kohonena
daily water consumption
prediction
artificial neural networks
perceptron networks
Self-Organizing Feature Map (SOFM) - Opis:
-
W pracy przedstawiono wyniki badań nad zastosowaniem samoorganizujących sieci Kohonena do prognozowania dobowego poboru wody. Dotychczas do prognozowania poboru wody używano sztucznych sieci neuronowych najprostszych typów, głównie sieci perceptronowych o pojedynczej warstwie ukrytej. Otrzymywano przy tym wyniki porównywalne lub lepsze od modeli stochastycznych opartych o analizę szeregów czasowych, jednakże sieci te nie pozwalały wniknąć w istotę kształtowania się procesu poboru wody. Wagi poszczególnych neuronów sieci perceptronowych, ustalane w trakcie ich uczenia, nie są bowiem powiązane z fizycznymi cechami prognozowanego szeregu czasowego. Z tego względu podjęto próbę zastosowania samoorganizujących sieci Kohonena dla prognozowania dobowego poboru wody w sieci wodociągowej. W badaniach wykorzystano szereg czasowy dobowego zużycia wody z lat 1996-2002 jednego z większych polskich wodociągów. Prognoza była wykonana dwuetapowo. Pierwszym jego etapem było prognozowanie sumarycznego tygodniowego rozbioru wody przy użyciu prostej sieci perceptronowej szeregu czasowego. W następnym etapie prognozowany całkowity, tygodniowy, rozbiór był rozdzielany na poszczególne dni tygodnia, zgodnie z wzorcami rozpoznanymi dla poszczególnych okresów roku przez samoorganizującą się strukturę sieci Kohonena. Otrzymywane wyniki były porównywalne z wcześniejszymi rezultatami autorów, uzyskanymi na tym obiekcie do prognozowania przy wykorzystaniu prostych sieci neuronowych oraz metody wygładzania wykładniczego. Dodatkowym - poznawczym - wynikiem przeprowadzonych badań są opracowane, przy wykorzystaniu sieci samoorganizującej się na zasadzie współzawodnictwa, profile tygodniowego poboru wody.
The objective of the study was to develop a hybrid tool for predicting daily water consumption by the combined use of the perceptron and Kohonen artificial neural networks. The investigations included a 7-year time series of total daily water consumption in the time span of 1996 to 2002, coming from one of Poland's largest water distribution systems. The prediction process was a two-stage one. At the first stage, the Self-Organizing Feature Map (SOFM) was made in order to establish the weekly water distribution patterns that are typical for each season of the year. At the second stage, a simple single hidden layer perceptron networks was built to enable the prediction of total weekly water consumption. Owing to the combined use of the perceptron and Kohonen artificial neural networks it was possible to work out high-quality daily water consumption predictions and to identify typical seasonal patterns of weekly water consumption. - Źródło:
-
Ochrona Środowiska; 2006, R. 28, nr 1, 1; 45-48
1230-6169 - Pojawia się w:
- Ochrona Środowiska
- Dostawca treści:
- Biblioteka Nauki