Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "planowanie najkrótszej ścieżki" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
D* Extra Lite: A dynamic A* with search-tree cutting and frontier-gap repairing
Autorzy:
Przybylski, M.
Putz, B.
Powiązania:
https://bibliotekanauki.pl/articles/329769.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
shortest path planning
incremental heuristic search
mobile robot navigation
video game
planowanie najkrótszej ścieżki
wyszukiwanie heurystyczne
nawigacja robota mobilnego
gra wideo
Opis:
Searching for the shortest-path in an unknown or changeable environment is a common problem in robotics and video games, in which agents need to update maps and to perform re-planning in order to complete their missions. D* Lite is a popular incremental heuristic search algorithm (i.e., it utilizes knowledge from previous searches). Its efficiency lies in the fact that it re-expands only those parts of the search-space that are relevant to registered changes and the current state of the agent. In this paper, we propose a new D* Extra Lite algorithm that is close to a regular A*, with reinitialization of the affected search-space achieved by search-tree branch cutting. The provided worst-case complexity analysis strongly suggests that D* Extra Lite’s method of reinitialization is faster than the focused approach to reinitialization used in D* Lite. In comprehensive tests on a large number of typical two-dimensional path-planning problems, D* Extra Lite was 1.08 to 1.94 times faster than the optimized version of D* Lite. Moreover, while demonstrating that it can be particularly suitable for difficult, dynamic problems, as the problem-complexity increased, D* Extra Lite’s performance further surpassed that of D*Lite. The source code of the algorithm is available on the open-source basis.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 2; 273-290
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An exact geometry-based algorithm for path planning
Autorzy:
Jafarzadeh, H.
Fleming, C. H.
Powiązania:
https://bibliotekanauki.pl/articles/331494.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
shortest possible path algorithm
path planning
collision free path
algorytm najkrótszej ścieżki
planowanie ścieżki
ścieżka bezkolizyjna
Opis:
A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn’2) time, where n is the number of vertices of all polygons and n’ is the number of vertices that are considered in constructing the path network (n’ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2018, 28, 3; 493-504
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies