Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "pixel-based classification (PBC)" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
An Evaluation of Pixel-based and Object-based Classification Methods for Land Use Land Cover Analysis Using Geoinformatic Techniques
Autorzy:
Powar, Sudhir K.
Panhalkar, Sachin S.
Patil, Abhijit S.
Powiązania:
https://bibliotekanauki.pl/articles/2055771.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
pixel-based classification (PBC)
object-based classification(OBC)
maximum likelihood classifier
multi-resolution segmentation
Opis:
Land use land cover (LULC) classification is a valuable asset for resource managers; in many fields of study, it has become essential to monitor LULC at different scales. As a result, the primary goal of this work is to compare and contrast the performance of pixel-based and object-based categorization algorithms. The supervised maximum likelihood classifier (MLC) technique was employed in pixel-based classification, while multi-resolution segmentation and the standard nearest neighbor (SNN) algorithm were employed in object-based classification. For the urban and suburban parts of Kolhapur, the Resourcesat-2 LISS-IV image was used, and the entire research region was classified into five LULC groups. The performance of the two approaches was examined by comparing the classification results. For accuracy evaluation, the ground truth data was used, and confusion matrixes were generated. The overall accuracy of the object-based methodology was 84.66%, which was significantly greater than the overall accuracy of the pixel-based categorization methodology, which was 72.66%. The findings of this study show that object-based classification is more appropriate for high-resolution Resourcesat-2 satellite data than MLC of pixel-based classification.
Źródło:
Geomatics and Environmental Engineering; 2022, 16, 2; 61--75
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies