Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "phase plane method" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Influence of control parameters on synchronization stability of virtual synchronous generator
Autorzy:
Zhang, Yanxia
Cheng, Yachao
Liu, Kaixiang
Han, Yue
Powiązania:
https://bibliotekanauki.pl/articles/2172794.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
control parameter
frequency modulation coefficient
phase plane method
synchronization stability
virtual synchronous generator
Opis:
Different from the synchronization mechanism of synchronous generators, the non-synchronous generators must be synchronized with the grid through a controller. Generally, the virtual synchronous generator (VSG) control strategy is adopted for this purpose. In view of the current situation, where the control loops are not comprehensively considered in the research of the synchronization stability of the VSG, this paper considers multiple control loops, such as active frequency loops, virtual governors, power filters and current constraint control, to establish the mathematical model of the VSG and infinite system. On this basis, the correlation formula between power angle difference and control parameters is deduced. Adopting the phase plane method, the influence of different control loops and their parameters on the transient synchronization stability is analyzed. Finally, a setting principle of the frequency modulation coefficient of virtual governors is proposed, which not only meets the response speed of control systems, but also has good control performance.
Źródło:
Archives of Electrical Engineering; 2022, 71, 4; 811--828
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the Analysis of Jump and Bifurcation Phenomena in a Forced Vibration of Geometrical Nonlinear Cantilever Beam: Application of Differential Transformation Method
Autorzy:
Sobamowo, M. G.
Yinusa, A. A.
Adeleye, O. A.
Oyelade, A. O.
Sadiq, O. M.
Powiązania:
https://bibliotekanauki.pl/articles/1031911.pdf
Data publikacji:
2020
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
Bifurcation Phenomenon
Differential transformation method
Jump phenomenon
Nonlinear vibration
Phase plane
Opis:
One of the classical features exhibited in nonlinear dynamics of engineering systems is the jump phenomenon, which is the discontinuous change in the steady state response of a system as a parameter is slowly varied. Such phenomenon is characterized by large amplitude dynamic responses of systems to small amplitude disturbances. It is established that this phenomenon cannot be described by the standard asymptotic and perturbation methods because they are limited to the study of small amplitude responses to small disturbances. Therefore, this paper presents the application of differential transformation method-Padé approximant to the solution of jump and bifurcation phenomena for a geometrical nonlinear cantilever beam subjected to a harmonic excitation. The accuracy and validity of the analytical solutions obtained by the differential transformation method are shown through a comparison of the results of the analytical solution with the corresponding results of the numerical solution obtained by fourth-order Runge-Kutta method and also with the results in a past study using harmonic balancing method. With the aid of the differential transformation method-Padé approximant, the effects of the nonlinear parameters in the model equation on the dynamic response of the beam are investigated. Also, the sensitivity of the beam to the external excitation amplitude is analyzed. In the distributed forced vibration, the jump phenomenon appeared in the response amplitude by variation of the excitation frequency while in the resonance frequency, the beat phenomenon with harmonic motion is seen for low level of excitation amplitude. At a certain frequency, the jump and bifurcation phenomena are seen in the curves of responses versus excitation amplitude. Additionally, the plots of the phase plane and time history of the system response are shown. It is established that the differential transformation method is a very useful mathematical tool for dealing with the nonlinear problems.
Źródło:
World Scientific News; 2020, 140; 26-58
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies