Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "peptydy opioidowe" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Potencjalne zastosowanie enkefalin w diagnostyce i terapii różnych chorób
Potential application enkephalns in diagnostics and treatment of various diseases
Autorzy:
Sobocińska, M.
Kamysz, E.
Powiązania:
https://bibliotekanauki.pl/articles/172068.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
endogenne peptydy opioidowe
enkefaliny
Leu-enkefalina
Met-enkefalina
endogenous opioid peptides
enkephalins
Met-enkephalin
Leu-enkephalin
Opis:
For the past few years enkephalins have been a center of appreciation and interest. Enkephalins were discovered in 1975 by Hughes, Kosterlitz and coworkers [1]. They can be described as short sequences of amino acids that are naturally produced in the central nervous system (CNS) in various glands throughout the body, such as the pituitary and adrenal glands [7, 9]. There were revealed two forms of enkephalins, one containing leucine, and the other containing methionine. Enkephalins are produced by the cleavage of a precursor protein called proenkephalin. From proenkephalin originate Met- and Leu-enkephalin, Met-enkephalin-Arg6-Gly7- -Leu8, Met-enkephalin-Arg6-Phe7 [1–3]. Enkephalins are involved in phenomena associated with modulated pain perception [13], regulation of memory and emotional conditions [21] and regulation of immunological system [29]. They also have an impact on the cardiovascular system [17], motility of the digestive system and metabolism of carbohydrates [8]. This article is a review of the current knowledge about enkephalins and their usage in the diagnostics and treatment of a variety of diseases: diseases/disorders of the central nervous system [21, 22], Parkinson’s disease [27], disease of the immune system [29], chronic pain [12], tumor diseases/cancer [33], heart and cardiovascular diseases [19] and inflammatory bowel disease [23].
Źródło:
Wiadomości Chemiczne; 2017, 71, 1-2; 33-44
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biwalentne ligandy receptorów opioidowych
Bivalent ligands of opioid receptors
Autorzy:
Frączak, O.
Olma, A.
Powiązania:
https://bibliotekanauki.pl/articles/171626.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
peptydy opioidowe
biwalentne ligandy niepeptydowe
biwalentne ligandy peptydowe
aktywność opioidowa
homobiwalentne ligandy
heterobiwalentne ligandy
opioid peptides
nonpeptide bivalent ligands
peptide bivalent ligands
opioid activity
homobivalent ligands
heterobivalent ligands
Opis:
Opioids are the oldest drugs know to humanity, which have been and continue to be used for the treatment of chronic pain. Unfortunately they have a large numbers of side effects [1–6]. Three main types of opioid receptors μ (MOR), δ (DOR) and κ (KOR) are known [8]. The ORL1 receptor was classified as the fourth member of opioid receptor family [9]. Opioid receptors can form homodimers and the following heterodimers: DOR-KOR, DOR-MOR and KOR-MOR [13c,d,f, 14]. Specially designed ligands which are able to penetrate the BBB are used to study physiological consequences of opioid receptor homo- and heterodimerization, and as new analgesics. Bivalent ligands are defined as compounds that contain two pharmacophoric units, an appropriately designed spacer to separate and define the two pharmacophores, and a linker unit to connect the pharmacophores, to the spacer (Fig. 1) [16]. The affinity of a ligand to its target depends on its fundamental kinetic association and dissociation rate constants (Scheme 1) [24]. Bivalent ligands interacting with the opioid receptors have been divided into three groups: nonpeptide, peptide- nonpeptide and peptide homo- or heterodimers. Nonpeptide bivalent ligands (4–21, 27–41 and 44–45) containing different pharmacophores (selective opioid agonists or/and antagonists) connected with designed linkers have potent analgesic properties [25–34]. Compound 35 may be useful in the treatment of opioid dependence. Studies of peptide-nonpeptide ligands, which are a combination of “address” segments of endogenous opioid peptides and selective alkaloid ligand (47–50) indicate that peptide part of the analogues can modulate the receptor selectivity of the attached alkaloid pharmacophores [35]. Series of peptide-nonpeptide ligands containing different classes of opioid peptides and fentanyl (52–86) were synthesized and tested for binding affinity to μ and δ opioid receptors [38–40]. Good opioid affinity and antinociceptive activity of some of the obtained bivalent ligands (57, 61, 63) suggesting that a novel class of analgesics can be further developed utilizing this approach. Among homobivalent ligands the most important is biphalin 87 and its analogues (88–124) [41–53]. Analgesic potency of the most active ligand 112 is greater than parent peptide (biphalin) and morphine.
Źródło:
Wiadomości Chemiczne; 2014, 68, 3-4; 233-255
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Badanie struktury i dynamiki N-terminalnych sekwencji dermorfiny i ich analogów z wykorzystaniem spektroskopii NMR w ciele stałym i rentgenografii
Studies on the structure and dynamics of N-terminal sequences of dermorphin and their analogs by means of solid state NMR spectroscopy and XRD
Autorzy:
Trzeciak-Karlikowska, K.
Powiązania:
https://bibliotekanauki.pl/articles/171648.pdf
Data publikacji:
2012
Wydawca:
Polskie Towarzystwo Chemiczne
Tematy:
peptydy opioidowe
oddziaływania CH-pi
dynamika molekularna
oddziaływanie peptyd–fosfolipid
spektroskopia NMR
1H Ultra Fast MAS NMR
PISEMA MAS
PILGRIM
XRD
opioid peptides
CH-pi interactions
molecular dynamics
peptide–phospholipid interaction
NMR spectroscopy
Opis:
Deltorphin I (Tyr-d-Ala-Phe-Asp-Val-Val-Gly-NH_2) and dermorphin (Tyr-d-Ala-Phe- -Gly-Tyr-Pro-Ser-NH_2) are natural opioid peptides that have been isolated from the skin of South American frogs [1]. The presence of d-amino acid is crucial for their biological activity. The synthetic analogs of given heptapeptides containing l-alanine are not analgesics [2]. Analysis of the influence of stereochemistry on molecular packing, dynamics and biological functions of neuropeptides is still important for receptor studies and practical applications (e.g. design of new selective pain killers). Presented research is focused on the structure and dynamics of two N-terminal sequences of dermorphin: tripeptide Tyr-d-Ala-Phe 1, tetrapeptide Tyr-D-Ala-Phe-Gly 2, and their analogs with l-alanine: Tyr-Ala-Phe 3 and Tyr-Ala-Phe-Gly 4, using solid state NMR and X-ray diffraction. This study clearly demonstrates that 1 and 2 crystallized under different conditions to form exclusively one structure [3, 4]. In contrast, tripeptide and tetrapeptide with l-Ala in the sequence very easily form different crystal modifications. Tyr-Ala-Phe 3 crystallizes into two forms: 3a and 3b [5], while Tyr-Ala-Phe-Gly 4 gives three modifications: 4a, 4b and 4c [4]. It seems that one of the factors, which can be important in the preorganization mechanism anticipating the formation of crystals, is the intramolecular CH-đ interaction between aromatic rings of tyrosine and/or phenylalanine and the methyl group of alanine. Such interaction is possible only for d-Ala residue. For l-Ala in the peptide sequence, the methyl group is aligned on the opposite side with respect at least to one of the aromatic groups. It can be further speculated that such internal CH-π contacts can also occur during the interaction of ligand–receptor, making the message sequence of opioid peptides more rigid and finally selective. By employing different NMR experiments (e.g. PISEMA MAS and PILGRIM) it was proven that the main skeleton of analyzed peptides is rigid, whereas significant differences in the molecular motion of the aromatic residues were observed [4, 6]. Solid state 2H NMR spectroscopy of samples with deuterium labeled aromatic rings: Tyrd4-d-Ala-Phe 5, Tyr-d-Ala-Phed5 6, Tyrd4-Ala-Phe 7, Tyr-Ala-Phe^d5 8 was used to analyze the geometry and time scale of the molecular motion. At ambient temperature, the tyrosine ring of sample 5 is rigid and in the sample 6 the phenylalanine ring undergoes a "π -flip". The tyrosine rings of form I of 7 and 8 are static, while the phenylalanine rings of form II of 7 and 8 undergo a fast regime exchange [6]. Variable temperature 2H measurements proved that the tyrosine and phenylalanine rings of two forms of compounds 7 and 8 became more mobile with increasing temperature. In contrast, the aromatic rings of samples 5 and 6 preserve their dynamics regime (static tyrosine and "π -flip" phenylalanine) in a large range of temperatures [6]. The analysis of 13C, 15N labeled tetrapeptide Tyr-D-Ala-Phe-Gly 2’-phospholipid membrane interactions suggests that peptide 2’ is aligned on the surface of the membrane (RFDR MAS) and the sandwich-like π -CH_3-π arrangement of the pharmacophore is preserved (DARR) [7].
Źródło:
Wiadomości Chemiczne; 2012, 66, 9-10; 867-891
0043-5104
2300-0295
Pojawia się w:
Wiadomości Chemiczne
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies