Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "particle swarm optimization algorithm" wg kryterium: Temat


Tytuł:
Modelling Microcystis Cell Density in a Mediterranean Shallow Lake of Northeast Algeria (Oubeira Lake), Using Evolutionary and Classic Programming
Autorzy:
Arif, Salah
Djellal, Adel
Djebbari, Nawel
Belhaoues, Saber
Touati, Hassen
Guellati, Fatma Zohra
Bensouilah, Mourad
Powiązania:
https://bibliotekanauki.pl/articles/2174666.pdf
Data publikacji:
2023
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
microcystis cell density
Multiple Linear Regression
Support Vector Machine
Particle Swarm Optimization
Genetic Algorithm
Bird Swarm Algorithm
Opis:
Caused by excess levels of nutrients and increased temperatures, freshwater cyanobacterial blooms have become a serious global issue. However, with the development of artificial intelligence and extreme learning machine methods, the forecasting of cyanobacteria blooms has become more feasible. We explored the use of multiple techniques, including both statistical [Multiple Regression Model (MLR) and Support Vector Machine (SVM)] and evolutionary [Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Bird Swarm Algorithm (BSA)], to approximate models for the prediction of Microcystis density. The data set was collected from Oubeira Lake, a natural shallow Mediterranean lake in the northeast of Algeria. From the correlation analysis of ten water variables monitored, six potential factors including temperature, ammonium, nitrate, and ortho-phosphate were selected. The performance indices showed; MLR and PSO provided the best results. PSO gave the best fitness but all techniques performed well. BSA had better fitness but was very slow across generations. PSO was faster than the other techniques and at generation 20 it passed BSA. GA passed BSA a little further, at generation 50. The major contributions of our work not only focus on the modelling process itself, but also take into consideration the main factors affecting Microcystis blooms, by incorporating them in all applied models.
Źródło:
Geomatics and Environmental Engineering; 2023, 17, 2; 31--68
1898-1135
Pojawia się w:
Geomatics and Environmental Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of Square-shaped Bolted Joints Based on Improved Particle Swarm Optimization Algorithm
Autorzy:
Chen, Kui
Yang, Cheng
Zhao, Yongsheng
Niu, Peng
Niu, NaNa
Hongchao, Wu
Powiązania:
https://bibliotekanauki.pl/articles/27312779.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
particle swarm optimization algorithm
bolt connection
bolted joint
fractal theory
Opis:
The bolted joint is widely used in heavy-duty CNC machine tools, which has huge influence on working precision and overall stiffness of CNC machine. The process parameters of group bolt assembly directly affect the stiffness of the connected parts. The dynamic model of bolted joints is established based on the fractal theory, and the overall stiffness of joint surface is calculated. In order to improve the total stiffness of bolted assembly, an improved particle swarm optimization algorithm with combination of time-varying weights and contraction factor is proposed. The input parameters are preloading of bolts, fractal dimension, roughness, and object thickness. The main goal is to maximize the global rigidity. The optimization results show that improved algorithm has better convergence, faster calculation speed, preferable results, and higher optimization performance than standard particle swarm optimization algorithm. Moreover, the global rigidity optimization is achieved.
Źródło:
Eksploatacja i Niezawodność; 2023, 25, 3; art. no. 168487
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Photovoltaic power prediction based on improved grey wolf algorithm optimized back propagation
Autorzy:
He, Ping
Dong, Jie
Wu, Xiaopeng
Yun, Lei
Yang, Hua
Powiązania:
https://bibliotekanauki.pl/articles/27309934.pdf
Data publikacji:
2023
Wydawca:
Polska Akademia Nauk. Czasopisma i Monografie PAN
Tematy:
BP neural network
photovoltaic power generation
PSO–GWO model
PSO–GWO–BP prediction model
particle swarm optimization
gray wolf optimization
back propagation
standard grey wolf algorithm
Opis:
At present, the back-propagation (BP) network algorithm widely used in the short-term output prediction of photovoltaic power stations has the disadvantage of ignoring meteorological factors and weather conditions in the input. The existing traditional BP prediction model lacks a variety of numerical optimization algorithms, such that the prediction error is large. The back-propagation (BP) neural network is easy to fall into local optimization thus reducing the prediction accuracy in photovoltaic power prediction. In order to solve this problem, an improved grey wolf optimization (GWO) algorithm is proposed to optimize the photovoltaic power prediction model of the BP neural network. So, an improved grey wolf optimization algorithm optimized BP neural network for a photovoltaic (PV) power prediction model is proposed. Dynamic weight strategy, tent mapping and particle swarm optimization (PSO) are introduced in the standard grey wolf optimization (GWO) to construct the PSO–GWO model. The relative error of the PSO–GWO–BP model predicted data is less than that of the BP model predicted data. The average relative error of PSO–GWO–BP and GWO–BP models is smaller, the average relative error of PSO–GWO–BP model is the smallest, and the prediction stability of the PSO–GWO–BP model is the best. The model stability and prediction accuracy of PSO–GWO–BP are better than those of GWO–BP and BP.
Źródło:
Archives of Electrical Engineering; 2023, 72, 3; 613--628
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bainite transformation time model optimization for Austempered Ductile Iron with the use of heuristic algorithms
Autorzy:
Olejarczyk-Wożeńska, Izabela
Opaliński, Andrzej
Mrzygłód, Barbara
Regulski, Krzysztof
Kurowski, Wojciech
Powiązania:
https://bibliotekanauki.pl/articles/29520068.pdf
Data publikacji:
2022
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
heuristic optimization
bainite
ADI
Particle Swarm Optimization
Evolutionary Optimization Algorithm
Opis:
The paper presents the application of heuristic optimization methods in identifying the parameters of a model for bainite transformation time in ADI (Austempered Ductile Iron). Two algorithms were selected for parameter optimization – Particle Swarm Optimization and Evolutionary Optimization Algorithm. The assumption of the optimization process was to obtain the smallest normalized mean square error (objective function) between the time calculated on the basis of the identified parameters and the time derived from the experiment. As part of the research, an analysis was also made in terms of the effectiveness of selected methods, and the best optimization strategies for the problem to be solved were selected on their basis.
Źródło:
Computer Methods in Materials Science; 2022, 22, 3; 125-136
2720-4081
2720-3948
Pojawia się w:
Computer Methods in Materials Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimizing the Bit-flipping Method for Decoding Low-density Parity-check Codes in Wireless Networks by Using the Artificial Spider Algorithm
Autorzy:
Ghaffoori, Ali Jasim
Abdul-Adheem, Wameedh Riyadh
Powiązania:
https://bibliotekanauki.pl/articles/2055251.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
low-density parity-check
LDPC
hard-decision Bit-Flipping
BF
particle swarm optimization
PSO
artificial spider algorithm
ASA
Opis:
In this paper, the performance of Low-Density Parity-Check (LDPC) codes is improved, which leads to reduce the complexity of hard-decision Bit-Flipping (BF) decoding by utilizing the Artificial Spider Algorithm (ASA). The ASA is used to solve the optimization problem of decoding thresholds. Two decoding thresholds are used to flip multiple bits in each round of iteration to reduce the probability of errors and accelerate decoding convergence speed while improving decoding performance. These errors occur every time the bits are flipped. Then, the BF algorithm with a low-complexity optimizer only requires real number operations before iteration and logical operations in each iteration. The ASA is better than the optimized decoding scheme that uses the Particle Swarm Optimization (PSO) algorithm. The proposed scheme can improve the performance of wireless network applications with good proficiency and results. Simulation results show that the ASA-based algorithm for solving highly nonlinear unconstrained problems exhibits fast decoding convergence speed and excellent decoding performance. Thus, it is suitable for applications in broadband wireless networks.
Źródło:
International Journal of Electronics and Telecommunications; 2022, 68, 1; 109--114
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance Comparison of Optimization Methods for Flat-Top Sector Beamforming in a Cellular Network
Autorzy:
Nandi, Pampa
Roy, Jibendu Sekhar
Powiązania:
https://bibliotekanauki.pl/articles/2142316.pdf
Data publikacji:
2022
Wydawca:
Instytut Łączności - Państwowy Instytut Badawczy
Tematy:
flat-top sector beam
particle swarm optimization
real-coded genetic algorithm
Opis:
The flat-top radiation pattern is necessary to form an appropriate beam in a sectored cellular network and to pro vide users with best quality services. The flat-top pattern offers sufficient power and allows to minimize spillover of signal to adjacent sectors. The flat-top sector beam pattern is relied upon In sectored cellular networks, in multiple-input multiple-output (MIMO) systems and ensures a nearly constant gain in the desired cellular sector. This paper presents a comparison of such optimization techniques as real-coded genetic algorithm (RGA) and particle swarm optimization (PSO), used in cellular networks in order to achieve optimum flat-top sector patterns. The individual parameters of flat-top sector beams, such as cellular coverage, ripples in the flat-top beam, spillover of radiation to the adjacent sectors and side lobe level (SLL) are investigated through optimization performed for 40◦ and 60◦ sectors. These parameters are used to compare the performance of the optimized RGA and PSO algorithms. Overall, PSO outperforms the RGA algorithm.
Źródło:
Journal of Telecommunications and Information Technology; 2022, 3; 39--46
1509-4553
1899-8852
Pojawia się w:
Journal of Telecommunications and Information Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wild Image Retrieval with HAAR Features and Hybrid DBSCAN Clustering For 3D Cultural Artefact Landmarks Reconstruction
Autorzy:
Pitchandi, Perumal
Powiązania:
https://bibliotekanauki.pl/articles/2201730.pdf
Data publikacji:
2022
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
outliers removal
culturalartefact objects
3D reconstruction
particle swarm optimization
PSO
spatial clustering
density based spatial clustering
noise clustering algorithm
Opis:
In this digital age large amounts of information, images and videos can be found in the web repositories which accumulate this information. These repositories include personal, historic, cultural, and business event images. Image mining is a limited field in research where most techniques look at processing images instead of mining. Very limited tools are found for mining these images, specifically 3D (Three Dimensional) images. Open source image datasets are not structured making it difficult for query based retrievals. Techniques extracting visual features from these datasets result in low precision values as images lack proper descriptions or numerous samples exist for the same image or images are in 3D. This work proposes an extraction scheme for retrieving cultural artefact based on voxel descriptors. Image anomalies are eliminated with a new clustering technique and the 3D images are used for reconstructing cultural artefact objects. Corresponding cultural 3D images are grouped for a 3D reconstruction engine’s optimized performance. Spatial clustering techniques based on density like PVDBSCAN (Particle Varied Density Based Spatial Clustering of Applications with Noise) eliminate image outliers. Hence, PVDBSCAN is selected in this work for its capability to handle a variety of outliers. Clustering based on Information theory is also used in this work to identify cultural object’s image views which are then reconstructed using 3D motions. The proposed scheme is benchmarked with DBSCAN (Density-Based Spatial Clustering of Applications with Noise) to prove the proposed scheme’s efficiency. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards a reliable and just-in-time 3D reconstruction than existing state-of-the-art techniques.
Źródło:
Advances in Science and Technology. Research Journal; 2022, 16, 3; 269--281
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Allocation of real power generation based on computing over all generation cost: an approach of Salp Swarm Algorithm
Autorzy:
Devarapalli, Ramesh
Sinha, Nikhil Kumar
Rao, Bathina Venkateswara
Knypiński, Łukasz
Lakshmi, Naraharisetti Jaya Naga
García Márquez, Fausto Pedro
Powiązania:
https://bibliotekanauki.pl/articles/1841291.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
economic load dispatch
heuristic algorithms
optimization
Particle Swarm
Algorithm
Salp Swarm Algorithm
ekonomiczna wysyłka ładunku
algorytmy heurystyczne
optymalizacja
rój cząstek
algorytm
Opis:
Economic Load Dispatch (ELD) is utilized in finding the optimal combination of the real power generation that minimizes total generation cost, yet satisfying all equality and inequality constraints. It plays a significant role in planning and operating power systems with several generating stations. For simplicity, the cost function of each generating unit has been approximated by a single quadratic function. ELD is a subproblem of unit commitment and a nonlinear optimization problem. Many soft computing optimization methods have been developed in the recent past to solve ELD problems. In this paper, the most recently developed population-based optimization called the Salp Swarm Algorithm (SSA) has been utilized to solve the ELD problem. The results for the ELD problem have been verified by applying it to a standard 6-generator system with and without due consideration of transmission losses. The finally obtained results using the SSA are compared to that with the Particle Swarm Optimization (PSO) algorithm. It has been observed that the obtained results using the SSA are quite encouraging.
Źródło:
Archives of Electrical Engineering; 2021, 70, 2; 337-349
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Cross‐Comparison of Evolutionary Algorithms for Optimizing Design of Sustainable Supply Chain Network under Disruption Risks
Autorzy:
Al-Zuheri, Atiya
Powiązania:
https://bibliotekanauki.pl/articles/2023790.pdf
Data publikacji:
2021
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
comparison
genetic algorithm
particle swarm optimization
sustainable supply chain design
disruption risk
porównanie
algorytm genetyczny
optymalizacja rojem cząstek
projektowanie zrównoważonego łańcucha dostaw
ryzyko zakłóceń
Opis:
Optimization of a sustainable supply chain network design (SSCND) is a complex decision-making process which can be done by the optimal determination of a set of decisions and constraints such as the selection of suppliers, transportation-related facilities and distribution centres. Different optimization techniques have been applied to handle various SSCND problems. Meta- heuristic algorithms are developed from these techniques that are commonly used to solving supply chain related problems. Among them, Genetic algorithms (GA) and particle swarm optimization (PSO) are implemented as optimization solvers to obtain supply network design decisions. This paper aims to compare the performance of these two evolutionary algorithms in optimizing such problems by minimizing the total cost that the system faces to potential disruption risks. The mechanism and implementation of these two evolutionary algorithms is presented in this paper. Also, using an optimization considers ordering, purchasing, inventory, transportation, and carbon tax cost, a numerical real-life case study is presented to demonstrate the validity of the effectiveness of these algorithms. A comparative study for the algorithms performance has been carried out based on the quality of the obtained solution and the results indicate that the GA performs better than PSO in finding lower-cost solution to the addressed SSCND problem. Despite a lot of research literature being done regarding these two algorithms in solving problems of SCND, few studies have compared the optimization performance between GA and PSO, especially the design of sustainable systems under risk disruptions.
Źródło:
Advances in Science and Technology. Research Journal; 2021, 15, 4; 342-351
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Economic dispatch in power system networks including renewable energy resources using various optimization techniques
Autorzy:
Hafiz, Abrar Mohamed
Abdelrahman, M. Ezzat
Temraz, Hesham
Powiązania:
https://bibliotekanauki.pl/articles/1841222.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Economic Dispatch (ED)
Particle Swarm Optimization (PSO)
Sine-Cosine
Algorithm (SCA)
Photovoltaic (PV)
Opis:
Economic dispatch (ED) is an essential part of any power system network. ED is how to schedule the real power outputs from the available generators to get the minimum cost while satisfying all constraints of the network. Moreover, it may be explained as allocating generation among the committed units with the most effective minimum way in accordance with all constraints of the system. There are many traditional methods for solving ED, e.g., Newton-Raphson method Lambda-Iterative technique, Gaussian-Seidel method, etc. All these traditional methods need the generators’ incremental fuel cost curves to be increasing linearly. But practically the input-output characteristics of a generator are highly non-linear. This causes a challenging non-convex optimization problem. Recent techniques like genetic algorithms, artificial intelligence, dynamic programming and particle swarm optimization solve nonconvex optimization problems in a powerful way and obtain a rapid and near global optimum solution. In addition, renewable energy resources as wind and solar are a promising option due to the environmental concerns as the fossil fuels reserves are being consumed and fuel price increases rapidly and emissions are getting higher. Therefore, the world tends to replace the old power stations into renewable ones or hybrid stations. In this paper, it is attempted to enhance the operation of electrical power system networks via economic dispatch. An ED problem is solved using various techniques, e.g., Particle Swarm Optimization (PSO) technique and Sine-Cosine Algorithm (SCA). Afterwards, the results are compared. Moreover, case studies are executed using a photovoltaic-based distributed generator with constant penetration level on the IEEE 14 bus system and results are observed. All the analyses are performed on MATLAB software.
Źródło:
Archives of Electrical Engineering; 2021, 70, 3; 643-655
1427-4221
2300-2506
Pojawia się w:
Archives of Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm
Autorzy:
Dziwiński, Piotr
Bartczuk, Łukasz
Paszkowski, Józef
Powiązania:
https://bibliotekanauki.pl/articles/1837533.pdf
Data publikacji:
2020
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
hybrid methods
Particle Swarm Optimization
Genetic Algorithm
fuzzy systems
multimodal function
Opis:
The social learning mechanism used in the Particle Swarm Optimization algorithm allows this method to converge quickly. However, it can lead to catching the swarm in the local optimum. The solution to this issue may be the use of genetic operators whose random nature allows them to leave this point. The degree of use of these operators can be controlled using a neuro-fuzzy system. Previous studies have shown that the form of fuzzy rules should be adapted to the fitness landscape of the problem. This may suggest that in the case of complex optimization problems, the use of different systems at different stages of the algorithm will allow to achieve better results. In this paper, we introduce an auto adaptation mechanism that allows to change the form of fuzzy rules when solving the optimization problem. The proposed mechanism has been tested on benchmark functions widely adapted in the literature. The results verify the effectiveness and efficiency of this solution.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2020, 10, 2; 95-111
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Design of a Predictive PID Controller Using Particle Swarm Optimization
Autorzy:
Mustafa, Norhaida
Hashim, Fazida Hanim
Powiązania:
https://bibliotekanauki.pl/articles/1844451.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
proportional integral derivative controller
particle swarm optimization (PSO) algorithm
optimization
predictive PID
Opis:
The proportional-integral-derivative (PID) controller is widely used in various industrial applications such as process control, motor drives, magnetic and optical memory, automotive, flight control and instrumentation. PID tuning refers to the generation of PID parameters (Kp, Ki, Kd) to obtain the optimum fitness value for any system. The determination of the PID parameters is essential for any system that relies on it to function in a stable mode. This paper proposes a method in designing a predictive PID controller system using particle swarm optimization (PSO) algorithm for direct current (DC) motor application. Extensive numerical simulations have been done using the Mathwork’s Matlab simulation environment. In order to gain full benefits from the PSO algorithm, the PSO parameters such as inertia weight, iteration number, acceleration constant and particle number need to be carefully adjusted and determined. Therefore, the first investigation of this study is to present a comparative analysis between two important PSO parameters; inertia weight and number of iteration, to assist the predictive PID controller design. Simulation results show that inertia weight of 0.9 and iteration number 100 provide a good fitness achievement with low overshoot and fast rise and settling time. Next, a comparison between the performance of the DC motor with PID-PSO, with PID of gain 1, and without PID were also discussed. From the analysis, it can be concluded that by tuning the PID parameters using PSO method, the best gain in performance may be found. Finally, when comparing between the PID-PSO and its counterpart, the PI-PSO, the PID-PSO controller gives better performance in terms of robustness, low overshoot (0.005%), low minimum rise time (0.2806 seconds) and low settling time (0.4326 seconds).
Źródło:
International Journal of Electronics and Telecommunications; 2020, 66, 4; 737-743
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Predicting and minimizing the blasting cost in limestone mines using a combination of gene expression programming and particle swarm optimization
Autorzy:
Bastami, Reza
Bazzazi, Abbas Aghajani
Shoormasti, Hadi Hamidian
Ahangari, Kaveh
Powiązania:
https://bibliotekanauki.pl/articles/1853861.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kopalnia wapienia
wybuch detonacyjny
regresja nieliniowa
blasting cost
limestone mine
gene expression programming
non-linear multivariate regression
particle swarm optimization algorithm
environmental impacts
Opis:
Blasting cost prediction and optimization is of great importance and significance to achieve optimal fragmentation through controlling the adverse consequences of the blasting process. By gathering explosive data from six limestone mines in Iran, the present study aimed to develop a model to predict blasting cost, by gene expression programming method. The model presented a higher correlation coefficient (0.933) and a lower root mean square error (1088) comparing to the linear and nonlinear multivariate regression models. Based on the sensitivity analysis, spacing and ANFO value had the most and least impact on blasting cost, respectively. In addition to achieving blasting cost equation, the constraints such as frag-mentation, fly rock, and back break were considered and analyzed by the gene expression programming method for blasting cost optimization. The results showed that the ANFO value was 9634 kg, hole dia-meter 76 mm, hole number 398, hole length 8.8 m, burden 2.8 m, spacing 3.4 m, hardness 3 Mhos, and uniaxial compressive strength 530 kg/cm2 as the blast design parameters, and blasting cost was obtainedas 6072 Rials/ton, by taking into account all the constraints. Compared to the lowest blasting cost among the 146-research data (7157 Rials/ton), this cost led to a 15.2% reduction in the blasting cost and optimal control of the adverse consequences of the blasting process.
Źródło:
Archives of Mining Sciences; 2020, 65, 4; 835-850
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the efficiency of population-based optimization in finding best parameters for RGB-D visual odometry
Autorzy:
Kostusiak, Aleksander
Skrzypczyński, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/384397.pdf
Data publikacji:
2019
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
particle swarm optimization (PSO)
evolutionary algorithm
visual odometry
RGB-D
Opis:
Visual odometry estimates the transformations between consecutive frames of a video stream in order to recover the camera’s trajectory. As this approach does not require to build a map of the observed environment, it is fast and simple to implement. In the last decade RGBD cameras proliferated in roboTIcs, being also the sensors of choice for many practical visual odometry systems. Although RGB-D cameras provide readily available depth images, that greatly simplify the frame-to-frame transformations computaTIon, the number of numerical parameters that have to be set properly in a visual odometry system to obtain an accurate trajectory estimate remains high. Whereas seƫng them by hand is certainly possible, it is a tedious try-and-error task. Therefore, in this article we make an assessment of two population-based approaches to parameter opTImizaTIon, that are for long time applied in various areas of robotics, as means to find best parameters of a simple RGB-D visual odometry system. The optimization algorithms investigated here are particle swarm optimization and an evolutionary algorithm variant. We focus on the optimization methods themselves, rather than on the visual odometry algorithm, seeking an efficient procedure to find parameters that minimize the estimated trajectory errors. From the experimental results we draw conclusions as to both the efficiency of the optimization methods, and the role of particular parameters in the visual odometry system.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2019, 13, 2; 5-14
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An Analytical Study for the Role of Fuzzy Logic in Improving Metaheuristic Optimization Algorithms
Autorzy:
Vij, Sonakshi
Jain, Amita
Tayal, Devendra
Castillo, Oscar
Powiązania:
https://bibliotekanauki.pl/articles/385121.pdf
Data publikacji:
2018
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
fuzzy logic
metaheuristics
evolutionary computing
genetic algorithm
particle swarm optimization (PSO)
ant colony optimization
fuzzy evolutionary algorithm
fuzzy cuckoo
fuzzy simulated annealing
fuzzy swarm intelligence
fuzzy differential evolution
tabu
fuzzy mutation
fuzzy natural selection
fuzzy fitness function
big bang big crunch
fuzzy bacterial
neuro fuzzy logic
logika rozmyta
metaheurystyka
obliczenia ewolucyjne
algorytm genetyczny
optymalizacja roju cząstek
optymalizacja kolonii mrówek
Opis:
The research applications of fuzzy logic have always been multidisciplinary in nature due to its ability in handling vagueness and imprecision. This paper presents an analytical study in the role of fuzzy logic in the area of metaheuristics using Web of Science (WoS) as the data source. In this case, 178 research papers are extracted from it in the time span of 1989-2016. This paper analyzes various aspects of a research publication in a scientometric manner. The top cited research papers, country wise contribution, topmost organizations, top research areas, top source titles, control terms and WoS categories are analyzed. Also, the top 3 fuzzy evolutionary algorithms are extracted and their top research papers are mentioned along with their topmost research domain. Since neuro fuzzy logic poses feasible options for solving numerous research problems, hence a section is also included by the authors to present an analytical study regarding research in it. Overall, this study helps in evaluating the recent research patterns in the field of fuzzy metaheuristics along with envisioning the future trends for the same. While on one hand this helps in providing a new path to the researchers who are beginners in this field as they can start exploring it through the analysis mentioned here, on the other hand it provides an insight to professional researchers too who can dig a little deeper in this field using knowledge from this study.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2018, 12, 4; 11-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies