Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "parameter adaptation" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Self-adaptation of parameters in a learning classifier system ensemble machine
Autorzy:
Troć, M.
Unold, O.
Powiązania:
https://bibliotekanauki.pl/articles/907767.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
komputerowe uczenie się
system klasyfikujący
sterowanie adaptacyjne
sterowanie parametryczne
machine learning
extended classifier system
self-adaptation
adaptive parameter control
Opis:
Self-adaptation is a key feature of evolutionary algorithms (EAs). Although EAs have been used successfully to solve a wide variety of problems, the performance of this technique depends heavily on the selection of the EA parameters. Moreover, the process of setting such parameters is considered a time-consuming task. Several research works have tried to deal with this problem; however, the construction of algorithms letting the parameters adapt themselves to the problem is a critical and open problem of EAs. This work proposes a novel ensemble machine learning method that is able to learn rules, solve problems in a parallel way and adapt parameters used by its components. A self-adaptive ensemble machine consists of simultaneously working extended classifier systems (XCSs). The proposed ensemble machine may be treated as a meta classifier system. A new self-adaptive XCS-based ensemble machine was compared with two other XCS-based ensembles in relation to one-step binary problems: Multiplexer, One Counts, Hidden Parity, and randomly generated Boolean functions, in a noisy version as well. Results of the experiments have shown the ability of the model to adapt the mutation rate and the tournament size. The results are analyzed in detail.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2010, 20, 1; 157-174
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Correlational parameter tuning by genetic meta-algorithm
Autorzy:
Kieś, P.
Kosiński, W.
Powiązania:
https://bibliotekanauki.pl/articles/206578.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Badań Systemowych PAN
Tematy:
adaptacja
algorytm genetyczny
optymalizacja
permutacja kodowa
strojenie parametrów
adaptation
code permutation
genetic algorithm
optimization
parameter tuning
Opis:
The general problem of an off-line parameter tuning in the Binary Genetic Algorithm (BGA) is introduced. An example of such a tuning: a class of Correlational Tuning Methods (CTMs) is proposed. The main idea of a CTM is that it uses a mapping called measurement function as an assessment of the BGA's effciency. An example of a measurement function is described and two examples of CTMs: a modified "trials and errors" method and a modified genetic meta-algoritlm (metaBGA) are shown. Finally, experimental results with the metaBGA for four kinds of test fitness functions, where the code permutation is the tuned parameter, are presented.
Źródło:
Control and Cybernetics; 2000, 29, 4; 1031-1042
0324-8569
Pojawia się w:
Control and Cybernetics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative studies on the morphometry and physiology of European populations of the lagoon specialist Cerastoderma glaucum (Bivalvia)
Autorzy:
Tarnowska, K.
Wolowicz, M.
Chenuil, A.
Feral, J.-P.
Powiązania:
https://bibliotekanauki.pl/articles/48074.pdf
Data publikacji:
2009
Wydawca:
Polska Akademia Nauk. Instytut Oceanologii PAN
Tematy:
ecophysiology
Baltic Sea
morphometry
bivalve
lagoon
European population
Cerastoderma glaucum
physiological parameter
seasonal change
adaptation
Mediterranean Sea
cockle
North Sea
Bivalvia
Opis:
Seasonal changes in the morphometric and physiological parameters of the cockle Cerastoderma glaucum (Bivalvia) from the Baltic Sea (GD), the North Sea (LV), and the Mediterranean Sea (BL) were investigated. The cockles from GD were much smaller than those from other populations due to osmotic stress. The female to male ratios did not differ significantly from 1 : 1. The northern populations (GD, LV) had a monocyclic reproductive pattern, whereas the southern population (BL) seemed to reproduce throughout the year. Seasonal changes in the contents of biochemical components appeared to be correlated with changes in trophic conditions and the reproductive cycle. Protein content was the highest in spring for all the populations. The highest lipid contents and lowest carbohydrate contents were noted in GD and BL in spring, while no marked differences were noted among seasons in LV (probably because the data from both sexes were pooled). Respiration rates in GD were the highest among the populations, which could have been due to osmotic stress. High metabolic rates expressed by high respiration rates in GD and LV in spring and autumn could have resulted from gamete development (in spring) and phytoplankton blooms (in spring and autumn).
Źródło:
Oceanologia; 2009, 51, 3; 437-458
0078-3234
Pojawia się w:
Oceanologia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters
Autorzy:
Leon, M.
Xiong, N.
Powiązania:
https://bibliotekanauki.pl/articles/91824.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
differential evolution
optimization
parameter adaptation
Opis:
Differential evolution (DE) presents a class of evolutionary and meta-heuristic techniques that have been applied successfully to solve many real-world problems. However, the performance of DE is significantly influenced by its control parameters such as scaling factor and crossover probability. This paper proposes a new adaptive DE algorithm by greedy adjustment of the control parameters during the running of DE. The basic idea is to perform greedy search for better parameter assignments in successive learning periods in the whole evolutionary process. Within each learning period, the current parameter assignment and its neighboring assignments are tested (used) in a number of times to acquire a reliable assessment of their suitability in the stochastic environment with DE operations. Subsequently the current assignment is updated with the best candidate identified from the neighborhood and the search then moves on to the next learning period. This greedy parameter adjustment method has been incorporated into basic DE, leading to a new DE algorithm termed as Greedy Adaptive Differential Evolution (GADE). GADE has been tested on 25 benchmark functions in comparison with five other DE variants. The results of evaluation demonstrate that GADE is strongly competitive: it obtained the best rank among the counterparts in terms of the summation of relative errors across the benchmark functions with a high dimensionality.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 2; 103-118
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies