Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "oxidation-reduction potential" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Simultaneous ammonium and nitrate removal by a modified intermittently aerated sequencing batch reactor (SBR) with multiple filling events
Autorzy:
Hajsardar, M.
Borghei, S. M.
Hassani, A. H.
Takdastan, A.
Powiązania:
https://bibliotekanauki.pl/articles/779882.pdf
Data publikacji:
2016
Wydawca:
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie. Wydawnictwo Uczelniane ZUT w Szczecinie
Tematy:
denitrification
intermittent aeration
filling event
oxidation-reduction potential
sequencing batch reactor
Opis:
Optimized methods for simultaneous removal of nitrate, nitrite and ammonium are important features of nutrient removal. Nitrogen removal efficiency in an intermittently aerated sequencing batch reactor (IA-SBR) with multiple filling events was studied. No external carbon source was added and three filling events were considered. Oxidationreduction potential (ORP) and pH curve at solids retention time (SRT) of 20 d were analyzed. Effects of three organic loading rates (OLR), 0.67, 1.0 and 1.5 kgCOD/m3d, and three nitrogen loading rates (NLR), 0.054, 0.1 and 0.15 kgN/m3d, on nitrogen removal were studied. Nitrate Apex in pH curve and Nitrate Knee in ORP profile indicated that the end of denitrification would be achieved sooner. The kinetic coefficients of endogenous decay (kd) and yield (Y) were identified to evaluate heterotrophic specific denitrification rate (SDNRb). In period 2 at NLR of 0.054 kgN/m3d and considering 2 anoxic and 3 aerobic phases, nitrogen removal efficiency was 91.43%.
Źródło:
Polish Journal of Chemical Technology; 2016, 18, 3; 72-80
1509-8117
1899-4741
Pojawia się w:
Polish Journal of Chemical Technology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Improvement of chalcopyrite atmospheric leaching using controlled slurry potential and additive treatments
Autorzy:
Jafari, M.
Karimi, G.
Ahmadi, R.
Powiązania:
https://bibliotekanauki.pl/articles/110092.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
chalcopyrite
improved leaching
controlled oxidation-reduction potential
additive treatment
pyrite
sodium chloride
silica
Opis:
In this study, the synergistic effects of the oxidation-reduction potential (ORP) of leaching slurry and additives (pyrite, sodium chloride and silica) on chalcopyrite atmospheric leaching were investigated. According to the best results of leaching experiments, in the optimum ORP range of 410-430 mV, galvanic (pyrite mass ratio of 4:1), chemical (1.5 mol/dm3 sodium chloride concentration), galvanochemical (pyrite mass ratio of 4:1 and 1.5 mol/dm3 sodium chloride concentration) and mechanical (30 g/dm3 silica concentration) treatments provided 29.8, 46.4, 48.6 and 6.7% increase in the copper recovery, respectively. In galvanic treatments, effective surface corrosion of chalcopyrite was the reason for enhanced chalcopyrite dissolution. In chemical and galvanochemical treatments, considerable surface porosity of chalcopyrite was responsible for accelerated leaching. Also, in mechanical treatments, removing the remained passive layer from the chalcopyrite surface improved leaching. SEM results showed extensive porosity in the chalcopyrite surface in the presence of pyrite and sodium chloride and even more porosity in the presence of their combination. SEM results also showed obviously clean surface of chalcopyrite in the presence of silica. The comparison of ORP-assisted and non-ORP-assisted experiments showed that there were 8, 5.2, 3.9 and 0.5% more copper recoveries in galvanic, chemical, galvanochemical and mechanical treatments with ORP assistance, respectively. The reason was the fewer chalcopyrite surface passivation, which caused the additives to perform better.
Źródło:
Physicochemical Problems of Mineral Processing; 2017, 53, 2; 1228-1240
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The influence of selected soil parameters on the mobility of heavy metals in soils
Wpływ wybranych parametrów gleby na mobilność metali ciężkich
Autorzy:
Fijałkowski, K.
Kacprzak, M.
Grobelak, A.
Placek, A.
Powiązania:
https://bibliotekanauki.pl/articles/297176.pdf
Data publikacji:
2012
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
metale ciężkie
zanieczyszczenie gleby
biodostępność metali ciężkich
skład granulometryczny
forma występowania kationów
wartość pH
pojemność sorpcyjna
makroelementy
mikroelementy
potencjał oksydacyjno-redukcyjny
działalność mikroorganizmów
oporność gleby
heavy metal
soil contamination
bioavailability heavy metals
granulometric composition
occurrence and form of cations
pH value
sorption capacity
macronutrients
micronutrients
oxidation-reduction potential
activity of microorganisms
resistance of the soil
Opis:
The activity of zinc-lead industry has a very negative impact on the environment, mainly because of the accumulation of post-mining and metallurgical waste, which in the long term leads to an adverse transformation of natural environment due to migration of dust and metals to soils, surface waters and groundwater. Metals and their compounds present in the soil fractions vary in the degree of mobility. Their bioavailability is regulated by physical, chemical and biological processes and interactions between them. The method of binding heavy metals, and hence their bioavailability, depends on several soil properties, which include: granulometric composition, organic matter content, occurrence and form of cations, pH value, sorption capacity, content of macro and micronutrients, oxidation-reduction potential, activity of microorganisms, bioavailability for plants and animals, resistance of the soil. Mechanical composition of soil is one of the important factors determining the extent of soil contamination with heavy metals and their content in plant tissues. Heavy soils, as compared to light soils, due to large amounts of suspended fraction, have a greater ability to retain metallic elements. On the other hand, light soil does not have such ability of sorption. At a comparable state of heavy metal pollution, it may contain metals in dissolved form, easily available for plants. All soils with high sorption capacity for cations, i.e. land containing a large amount of clay minerals, have the ability to accumulate metallic elements. Increasing the amount of organic matter in the soil, helps to minimize the absorption of heavy metals by plants. Land rich in organic matter actively retains metallic elements. Forms of occurrence of heavy metals in soil significantly affect their mobility. The most mobile elements include the Cd, Zn and Mo, while the least mobile are Cr, Ni and Pb. Soil pH is considered one of the most important factors determining the concentration of metals in the soil solution, their mobility and availability to plants. The increase of hydrogen ion concentration affects the mobilisation intensity of heavy metals. In highly acidic soils, the mobility of metallic elements is much higher than in soils with neutral and alkaline reaction. The potential of oxidation - reduction of soil significantly determines participation in the form of a mobile element, which can enter the biological cycle, in relation to the total element content. Lack of oxygen in the soil causes start-up and increase the mobility of the large part of heavy metals. Each plant needs for growth and development the appropriate amounts of mineral salts, i.e. macronutrients and micronutrients. Plants draw heavy metals from the soil in a similar way as the macronutrients and micronutrients through the root system. The rate of uptake by the roots of metallic elements depends on the chemical form in which they appear in the soil. Insufficient amount of micronutrients in the soil often results in excessive accumulation of several heavy metals in plants. Properly balanced and well chosen level of nutrients in the soil, ensures high yields with a low content of heavy metals. Stress caused by an excess of heavy metals is the beginning of disturbances in the metabolism of plants and can lead to disturbances in the collection, transport and assimilation of macro-and micronutrients. Metallic elements accumulated in the soil inhibit the growth of microorganisms that inhabit it, leading to a distortion of their basic life functions, and especially the processes of decomposition and transformation of organic matter. Microorganism activity in ryzosphere is also a major determinant of growth of the plant and its resistance to pathogens. Soil contamination processes are constant, but compared to other elements of the environment, they are the most capable to defend themselves, acting as a buffer for pollutants. Resistance to contamination, regarding the pressure of degrading factors, land owes to its physical, chemical and biological properties. Resistance of soil is biochemical, because it results from the ability of plants to absorb and neutralize chemically active pollutants.
Działalność zakładów przemysłu cynkowo-ołowiowego bardzo negatywnie wpływa na środowisko przyrodnicze, co prowadzi do jego niekorzystnego przekształcenia na skutek pylenia i migracji metali do gleb oraz wód powierzchniowych i gruntowych. Metale oraz ich wiązki obecne we frakcjach glebowych charakteryzują się różnym stopniem mobilności. Sposób wiązania metali ciężkich, a tym samym ich biodostępność zależy od wielu właściwości gleby, do których zaliczyć można: skład granulometryczny, zawartość materii organicznej, formę występowania kationów, wartość pH, pojemność sorpcyjną, zawartość makro- i mikroelementów, potencjał oksydacyjno-redukcyjny, działalność mikroorganizmów, biodostępność dla roślin i zwierząt, oporność gleby. Skład mechaniczny gleby jest jednym z istotnych czynników decydujących o stopniu zanieczyszczenia gruntu metalami ciężkimi oraz ich zawartości w tkankach roślin. Gleby ciężkie, w porównaniu do gleb lekkich, za sprawą dużych ilości części spławianych posiadają większe zdolności zatrzymywania pierwiastków metalicznych. Natomiast gleby lekkie, nie posiadając takich zdolności do sorbowania metali ciężkich, przy porównywalnym stanie zanieczyszczeń mogą zawierać metale w formie rozpuszczonej, czyli łatwo dostępnej dla roślin. Wszystkie gleby charakteryzujące się wysoką pojemnością sorpcyjną w stosunku do kationów, czyli grunty zawierające dużą ilość minerałów ilastych, wykazują zdolność akumulacji pierwiastków metalicznych. Zwiększenie ilości materii organicznej w glebie sprzyja zminimalizowaniu pobierania metali ciężkich przez rośliny. Grunt bogaty w substancję organiczną aktywnie zatrzymuje pierwiastki metaliczne. Formy występowania metali ciężkich w glebie w znacznym stopniu wpływają na ich mobilność. Do najbardziej mobilnych pierwiastków zaliczyć można Cd, Zn i Mo, natomiast do najmniej ruchliwych należą Cr, Ni i Pb. Wartość pH gleby uważana jest za jeden z najważniejszych czynników decydujących o stężeniu metali w roztworze glebowym, ich ruchliwości oraz dostępności dla roślin. Wzrost stężenia jonów wodorowych ma wpływ na intensywność uruchamiania metali ciężkich. W glebach silnie zakwaszonych mobilność pierwiastków metalicznych jest znacznie wyższa niż w glebach o odczynie obojętnym i zasadowym. Potencjał oksydacyjno-redukcyjny gleby w istotny sposób warunkuje udział danego pierwiastka w formie mobilnej, w której może wejść w obieg biologiczny, w stosunku do całkowitej zawartości pierwiastka. Niedostatek tlenu w gruncie wywołuje uruchomienie oraz wzrost mobilności znacznej ilości metali ciężkich. Każda roślina potrzebuje do wzrostu i rozwoju odpowiednich ilości soli mineralnych, czyli makroelementów i mikroelementów. Rośliny pobierają z gruntu metale ciężkie w podobny sposób jak makroskładniki i mikroskładniki za pomocą systemu korzeniowego. Szybkość pobierania przez korzenie pierwiastków metalicznych uzależniona jest od postaci chemicznej, w jakiej występują w glebie. Niedostateczna ilość mikroelementów w gruncie powoduje często nadmierną akumulację wielu metali ciężkich w roślinach. Zrównoważony oraz właściwie dobrany poziom składników pokarmowych w glebie zapewnia uzyskanie wysokich plonów o niskiej zawartości metali ciężkich. Stres spowodowany nadmiarem metali ciężkich jest początkiem zakłóceń w metabolizmie roślin i może prowadzić do zaburzeń w pobieraniu, transporcie i asymilacji makro- i mikroskładników. Pierwiastki metaliczne nagromadzone w glebie hamują rozwój mikroorganizmów, które ją zasiedlają, prowadząc do zakłócenia ich podstawowych funkcji życiowych, a zwłaszcza procesów związanych z rozkładem i przemianą substancji organicznej. Aktywność mikroorganizmów ryzosfery stanowi także główny czynnik warunkujący wzrost samej rośliny oraz jej odporność na patogeny. Gleby stale ulegają procesom zanieczyszczenia, jednak ze wszystkich elementów środowiska są w stanie najskuteczniej bronić się, stanowiąc pewien bufor dla zanieczyszczeń. Odporność na skażenie, wobec presji czynników degradujących, grunt zawdzięcza swoim właściwościom fizycznym, chemicznym i biologicznym. Odporność gleb ma charakter biochemiczny, gdyż wynika ze zdolności roślin do pochłaniania i neutralizacji ładunków zanieczyszczeń chemicznie aktywnych.
Źródło:
Inżynieria i Ochrona Środowiska; 2012, 15, 1; 81-92
1505-3695
2391-7253
Pojawia się w:
Inżynieria i Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies