Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "orthogonal least squares" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Discrimination of Selected Cold-Pressed and Refined Oils by Untargeted Profiling of Phase Transition Curves of Differential Scanning Calorimetry
Autorzy:
Islam, Mahbuba
Magdalena, Montowska
Emilia, Fornal
Jolanta, Tomaszewska-Gras
Powiązania:
https://bibliotekanauki.pl/articles/16538550.pdf
Data publikacji:
2023-08-02
Wydawca:
Instytut Rozrodu Zwierząt i Badań Żywności Polskiej Akademii Nauk w Olsztynie
Tematy:
authentication
plant oils
chemometrics
multivariate data analysis
melting profiles
orthogonal partial least squares-discriminant analysis
differential scanning calorimetry
Opis:
The authenticity assessment of edible oils is crucial to reassure consumers of product compliance. In this study, a new approach was taken to combining untargeted profiling by using differential scanning calorimetry (DSC) with chemometric methods in order to distinguish cold-pressed oils (flaxseed, camelina, hempseed) from refined oils (rapeseed, sunflower, soybean). The whole spectrum of DSC melting profiles was considered as a fingerprint of each oil. Flaxseed and hempseed oils exhibited four endothermic peaks, while three peaks with one exothermic event were detected for camelina seed oil. In the case of refined oils, two endothermic peaks were detected for rapeseed oil, three for sunflower oil and four for soybean oil. Thermodynamic parameters, such as peak temperature, peak heat flow and enthalpy, differed for each type of oil. Principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used for processing data consisting of the whole spectrum of heat flow variables of melting phase transition. PCA demonstrated a clear separation between refined and cold-pressed oils as well as six individual oils. The OPLS-DA showed a distinct classification in six classes according to the types of oils. High OPLS-DA coefficients including R2X(cum)=0.971, R2(cum)=0.916 and Q2X(cum)=0.887 indicated good fitness of the model for oil discrimination. Variables influence on projection (VIP) plot indicated the most significant variables of the heat flow values detected at temperatures around −29°C, −32°C, −14°C, −10°C, −24°C and −41°C for the differentiation of oils. The study ultimately demonstrated great potential of the untargeted approach of using the whole melting DSC profile with chemometrics for the discrimination of cold-pressed and refined oils.
Źródło:
Polish Journal of Food and Nutrition Sciences; 2023, 73, 3; 224-232
1230-0322
2083-6007
Pojawia się w:
Polish Journal of Food and Nutrition Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
Autorzy:
Soltani, M.
Chaari, A.
Ben Hmida, F.
Powiązania:
https://bibliotekanauki.pl/articles/330134.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model rozmyty Takagi-Sugeno
algorytm grupowania
metoda najmniejszych kwadratów
optymalizacja rojem cząstek
Takagi-Sugeno fuzzy models
noise clustering algorithm
fuzzy c-regression model
orthogonal least squares
particle swarm optimization (PSO)
Opis:
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 617-628
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies