Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "orthogonal filter" wg kryterium: Temat


Wyświetlanie 1-7 z 7
Tytuł:
An Overview of the Methods of Synthesis, Realization and Implementation of Orthogonal 3-D Rotation Filters and Possibilities of Further Research and Development
Autorzy:
Poczekajło, Paweł
Powiązania:
https://bibliotekanauki.pl/articles/1844643.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
3-D filters
orthogonal filter
rotation filter
Givens rotation
synthesis
realization
implementation
algorithms
Opis:
In the paper, an overview of the methods and algorithms of synthesis, realization and implementation used by the author to obtain orthogonal 3-D filters with a structure made of Givens rotations has been presented. The main advantage of orthogonal filters, which may have a lower sensitivity to quantization of the coefficients, was indicated. The author proposed a number of possible changes and modifications of individual stages, which may result in obtaining filters with even better parameters. The work will be the basis for the direction of further research.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 2; 295-300
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Liniowa filtracja obrazów cyfrowych za pomocą struktur bezstratnych
Linear image filtration based on loss-less structures
Autorzy:
Wirski, R. T.
Strzeszewski, B.
Powiązania:
https://bibliotekanauki.pl/articles/155244.pdf
Data publikacji:
2014
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
filtr cyfrowy
przetwarzanie 2-D
filtr ortogonalny
skończona odpowiedź impulsowa
digital filter
2-D processing
orthogonal filter
finite impulse response
Opis:
W artykule przedstawiono nową technikę implementacji filtrów dwuwymiarowych. Polega ona na rozkładzie macierzy modelu Roessera na kaskadowe połączenie rotatorów Givens'a. Dzięki nowatorskiemu zastosowaniu permutacji otrzymuje się strukturę potokową o dużej odporności na błędy obliczeń o skończonej precyzji.
In this paper, a novel two-dimensional FIR filter implementation technique is presented. It is based on a concept of orthogonal filters known from 1-D domain. The key of the algorithm is to represent a 2-D system as a cascade connection of two 1-D systems, which are described by 1-D transfer function vectors, given by (7). Each 1-D system is transformed into an orthogonal system via the synthesis of a paraunitary transfer matrix [5]. As a result, one obtains a cascade connection of two 1-D systems described by orthogonal state-space equations. Then, the equations can be combined to form orthogonal Roesser model matrices (14), and can be implemented using Givens Rotations and delay elements. The technique is illustrated by an example of an edge detection kernel filter whose convolution matrix is given by (15). Following the algorithm presented in the paper, there was obtained the Roesser model (22) and its decomposition into the cascade connection of Givens rotations whose parameters are collected in Tab 1. It was implemented using Audio Video Development Kit Stratix II GX. Givens rotation blocks were built by means of DSP blocks available in FPGA chip. Additionally, a system that realizes the same convolution matrix (15), but based on a direct structure (nine multipliers), was built for comparable purposes. Two tests were performed: an impulse response and sensitivity of frequency response to coefficient changes. The impulse response of both systems is the same up to finite precision errors. The sensitivity is much lower for the rotation structure (Fig. 2) when compared to the direct structure (Fig. 3).
Źródło:
Pomiary Automatyka Kontrola; 2014, R. 60, nr 10, 10; 812-815
0032-4140
Pojawia się w:
Pomiary Automatyka Kontrola
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173530.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e139393, 1--30
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173636.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; art. no. e139393
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173537.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; e139393, 1--30
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Execution time prediction model for parallel GPU realizations of discrete transforms computation algorithms
Autorzy:
Puchala, Dariusz
Stokfiszewski, Kamil
Wieloch, Kamil
Powiązania:
https://bibliotekanauki.pl/articles/2173635.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
graphics processing unit
GPU
execution time prediction model
discrete wavelet transform
DWT
lattice structure
convolution-based approach
orthogonal transform
orthogonal filter banks
time effectiveness
prediction accuracy
procesor graficzny
model przewidywania czasu wykonania
dyskretna transformata falkowa
struktura sieciowa
podejście oparte na splotach
przekształcenia ortogonalne
ortogonalne banki filtrów
efektywność czasowa
dokładność przewidywania
Opis:
Parallel realizations of discrete transforms (DTs) computation algorithms (DTCAs) performed on graphics processing units (GPUs) play a significant role in many modern data processing methods utilized in numerous areas of human activity. In this paper the authors propose a novel execution time prediction model, which allows for accurate and rapid estimation of execution times of various kinds of structurally different DTCAs performed on GPUs of distinct architectures, without the necessity of conducting the actual experiments on physical hardware. The model can serve as a guide for the system analyst in making the optimal choice of the GPU hardware solution for a given computational task involving particular DT calculation, or can help in choosing the best appropriate parallel implementation of the selected DT, given the limitations imposed by available hardware. Restricting the model to exhaustively adhere only to the key common features of DTCAs enables the authors to significantly simplify its structure, leading consequently to its design as a hybrid, analytically–simulational method, exploiting jointly the main advantages of both of the mentioned techniques, namely: time-effectiveness and high prediction accuracy, while, at the same time, causing mutual elimination of the major weaknesses of both of the specified approaches within the proposed solution. The model is validated experimentally on two structurally different parallel methods of discrete wavelet transform (DWT) computation, i.e. the direct convolutionbased and lattice structure-based schemes, by comparing its prediction results with the actual measurements taken for 6 different graphics cards, representing a fairly broad spectrum of GPUs compute architectures. Experimental results reveal the overall average execution time and prediction accuracy of the model to be at a level of 97.2%, with global maximum prediction error of 14.5%, recorded throughout all the conducted experiments, maintaining at the same time high average evaluation speed of 3.5 ms for single simulation duration. The results facilitate inferring the model generality and possibility of extrapolation to other DTCAs and different GPU architectures, which along with the proposed model straightforwardness, time-effectiveness and ease of practical application, makes it, in the authors’ opinion, a very interesting alternative to the related existing solutions.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2022, 70, 1; art. no. e139393
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Single-phase power active filter using instantaneous reactive power theory : theoretical and practical approach
Autorzy:
Altus, J.
Michalik, J.
Dobrucky, B.
Viet, L. H.
Powiązania:
https://bibliotekanauki.pl/articles/262653.pdf
Data publikacji:
2005
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie
Tematy:
power active filter
p-q power theory
orthogonal transformations
single-phase system
fictitous virtual quantity
Opis:
The paper deals with the new method of analysis, synthesis and experimentation of single-phase power active filters. By using a new particular transformation theory, the ordinary single-phase system can be transformed into an equivalent two-axes orthogonal one. The new original thought is based on the idea that ordinary single-phase quantity can be complemented bv fictitious second phase so that both of them will create an orthogonal system, as is usual in three-phase systems, in spite of [1]. Application of the above theory makes it possible to use complex methods of analysis as the instantaneous reactive power method, which have not been usable for single-phase systems so far. Both, the active and reactive powers can be determined by this way. Practical application of the method is outlined for the case of reference current determination for single-phase power active filter. The paper shows some examples of the simu-lution verification results, which proved a high accuracy and extremely fast response of the single-phase active filter with control, based on the introduced method. The effectiveness of proposed control algorithm is also demonstrated by experimental results, which were carried out on the single - phase active parallel filter, power rate of 25 kVA and controlled by 32 - bit Heating point digital signal processor TMS 320C31.
Źródło:
Electrical Power Quality and Utilisation. Journal; 2005, 11, 1; 33-38
1896-4672
Pojawia się w:
Electrical Power Quality and Utilisation. Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies