Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "on-line vertex colouring" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
On-line ranking number for cycles and paths
Autorzy:
Bruoth, Erik
Horňák, Mirko
Powiązania:
https://bibliotekanauki.pl/articles/744150.pdf
Data publikacji:
1999
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
ranking number
on-line vertex colouring
cycle
path
Opis:
A k-ranking of a graph G is a colouring φ:V(G) → {1,...,k} such that any path in G with endvertices x,y fulfilling φ(x) = φ(y) contains an internal vertex z with φ(z) > φ(x). On-line ranking number $χ*_r(G)$ of a graph G is a minimum k such that G has a k-ranking constructed step by step if vertices of G are coming and coloured one by one in an arbitrary order; when colouring a vertex, only edges between already present vertices are known. Schiermeyer, Tuza and Voigt proved that $χ*_r(Pₙ) < 3log₂n$ for n ≥ 2. Here we show that $χ*_r(Pₙ) ≤ 2⎣log₂n⎦+1$. The same upper bound is obtained for $χ*_r(Cₙ)$,n ≥ 3.
Źródło:
Discussiones Mathematicae Graph Theory; 1999, 19, 2; 175-197
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies