Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "object-oriented classification" wg kryterium: Temat


Wyświetlanie 1-10 z 10
Tytuł:
Examples of object-oriented classification performed on high-resolution satellite images
Autorzy:
Lewiński, Stanisław
Zaremski, Karol
Kwiatkowska, Joanna M.
Powiązania:
https://bibliotekanauki.pl/articles/2029415.pdf
Data publikacji:
2004-06-01
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
object-oriented classification
land use
satellite images
eCognition
Opis:
Information about the types of land cover and its use is obtained by the visual interpretation of the color composite of satellite images or by the use of automatic classification algorithms. For obvious reasons, the automatic classification methods make it possible to obtain information quicker and much faster than the traditional interpretation method. The commonly used automatic methods of satellite image classification, based on supervised or unsupervised classification algorithms, are the most accurate when used with low resolution images. In the case of images with 1-meter-sized pixels, showing a diversity of land cover forms, it is not possible to obtain satisfactory results. New classification techniques, based on object-oriented classification algorithms, have been developing for a couple of years now. In contrast to the traditional methods, the new operating procedure does not involve the classification of single pixels, but of entire objects, into which the content of the satellite image is divided. Aside from the spectral values of the pixels, the shape of the objects created by the pixels and the relationships between the objects, are also considered during the analysis. Similar to visual interpretation, variation in the texture of the image can also be taken into account in this case. The aim of this article is to present the possibility of using high density satellite images in object-oriented classification. The classification presented is that of a high-rise built area in Wrocław and of bridges on the Vistula River in Warsaw.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2004, 11; 349-358
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ocena możliwości wykorzystania tekstury w rozpoznaniu podstawowych klas pokrycia terenu na zdjęciach satelitarnych różnej rozdzielczości
Evaluation of usability of texture in identifying basic land cover classes on the satellite images of different resolutions
Autorzy:
Lewiński, S.
Aleksandrowicz, S.
Powiązania:
https://bibliotekanauki.pl/articles/130790.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
tekstura
object-oriented classification
texture
Opis:
Podjęto próbę prześledzenia możliwości podziału treści zdjęcia, stosowanego w klasyfikacji obiektowej, na dwie podstawowe klasy związane z „niskimi” i „wysokimi” wartościami tekstury w funkcji rożnej rozdzielczości zdjęć. Na podstawie kanału panchromatycznego zdjęcia KOMPSAT-2 o rozdzielczości 1 m przygotowano zestaw danych o rozdzielczości 1, 2, 4, 8, 16, 32 i 64 m. Następnie przetworzono je wybranymi funkcjami tekstury, które wykorzystywane są w toku klasyfikacji obiektowej: filtr Sobel, filtr Laplacian, suma filtrów Sigma, przekształcenie PanBF oraz funkcje Haralick’a: korelacja, homogeniczność i entropia. Na ich podstawie wykonano analizę rozróżnialności czterech podstawowych klas pokrycia terenu: tereny zabudowane, lasy, pola uprawne i woda. Dla każdej rozdzielczości i przekształcenia obliczono odległość Bhattacharya oraz odległość Jeffries-Matusita (J-M). Założono, że dwie klasy są dobrze rozróżnialne jeżeli wartość J-M jest większa od 1.7. Uzyskane wyniki w postaci odległości J-M przedstawione są w tabelach 1-7. W przypadku wszystkich siedmiu przekształceń najlepsze wyniki rozróżnialności klas zaobserwowano na zdjęciach o największej rozdzielczości. Natomiast wyraźne pogorszenie rozróżnialności nastąpiło w przypadku zdjęć o rozdzielczości 8 m i mniejszej. Zdecydowanie najlepsze wyniki uzyskano na podstawie przekształceń wykonanych filtrem Laplacian, a następnie Sobel, Sigma oraz przekształceniem PanBF. W porównaniu z nimi przydatność funkcji Haralick’a do podziału treści zdjęcia na dwie klasy tekstury okazała się zdecydowanie mniejsza. Przedstawione wyniki znajdują praktyczne zastosowanie w pracach nad doborem odpowiednich algorytmów klasyfikacyjnych zdjęć satelitarnych o bardzo wysokiej, wysokiej a także średniej rozdzielczości.
An attempt was made to trace the possibility of division of the content of satellite images into two basic classes associated with the "low" and "high" values of the texture. This classification approach is applied during object-oriented classification and results are dependent on spatial resolution. On the basis of panchromatic channel of KOMPSAT-2 image of 1m resolution a data set with a resolution of 1, 2, 4, 8, 16, 32 and 64 m were prepared. Then images were processed using selected texture functions: Sobel, Laplacian and Sigma filters, transformation PanBF as well as Haralick functions: correlation, homogeneity and entropy. On the basis of texture images an analysis of discrimination of four basic land cover classes has been done: built-up areas, forests, agriculture areas and water. These classes were selected because built-up areas and forest belong to “high” texture and remaining two are usually represented by “low” values of texture. For each texture image form using different functions and spatial resolution, Bhattacharya distance and next Jeffries-Matusita (J-M) distance between land cover classes were calculated. Results are presented in tables 1, 2, 3, 4, 5, 6 and 7. They also include J-M distance between “low” and “high” texture. It was assumed that two classes are well seperated if the value of J-M distance is over 1.7. In the case of all seven texture transformations the best results of class discrimination were observed for images with the highest resolution. Distinct deterioration of discrimination between “low” and “high” texture took place in the case of images with a resolution of 8 m or less. By far the highest J-M values were obtained on the basis of Laplacian filter and next using Sigma filter, PanBF and the Sobel filter. In comparison usefulness of the Haralick function has proved much less. The presented results could be practically applied in the work on classification algorithms of very high, high and medium resolution satellite images.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 229-237
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Object-oriented classification of Landsat ETM+ satellite image
Klasyfikacja obiektowa zdjęcia satelitarnego Landsat ETM+
Autorzy:
Lewiński, S.
Powiązania:
https://bibliotekanauki.pl/articles/293332.pdf
Data publikacji:
2006
Wydawca:
Instytut Technologiczno-Przyrodniczy
Tematy:
klasyfikacja obiektowa
Landsat ETM+
użytkowanie ziemi
object-oriented classification
land use
Opis:
This paper presents results of object-oriented classification of Landsat ETM+ satellite image conducted using eCognition software. The classified image was acquired on 7 May 2000. In this particular study, an area of 423 km² within the borders of Legionowo Community near Warsaw is considered. Prior to classification, segmentation of the Landsat ETM+ image is performed using panchromatic channel, fused multispectral and panchromatic data. The applied methods of classification enabled the identification of 18 land cover and land use classes. After the classification, generalization and raster to vector conversion, verification and accuracy assessment are performed by means of visual interpretation. Overall accuracy of the classification reached 94.6%. The verification and classification results are combined to form the final database. This is followed by comparing the object-oriented with traditional pixel-based classification. The latter is performed using the so-called hybrid classification based on both supervised and unsupervised classification approaches. The traditional pixel-based approach identified only 8 classes. Comparison of the pixel-based classification with the database obtained using the object-oriented approach revealed that the former reached 72% and 61% accuracy, according to the applied method.
W artykule przedstawiono wyniki klasyfikacji obiektowej zdjęcia satelitarnego Landsat ETM+, uzyskane z zastosowaniem specjalistycznego oprogramowania eCognition. Klasyfikację wykonano na przykładzie zdjęcia zarejestrowanego 7 maja 2000 r., obrazującego obszar badawczy o powierzchni 423 km², znajdujący się w granicach powiatu legionowskiego w pobliżu Warszawy. Proces klasyfikacji obiektowej polega na rozpoznaniu obiektów, którymi są grupy pikseli spełniające założone kryterium jednorodności. Granice obiektów zostały zdefiniowane w czasie segmentacji zdjęcia, wykonanej na podstawie wartości pikseli kanału panchromatycznego skanera ETM+ oraz danych uzyskanych w wyniku połączenia wybranych kanałów wielospektralnych z kanałem panchromatycznym. Zastosowane metody klasyfikacyjne, związane nie tylko z wartościami spektralnymi charakteryzującymi poszczególne obiekty, lecz również z kryteriami parametrycznymi, umożliwiły identyfikację 18 klas pokrycia i użytkowania ziemi. Następnie wynik klasyfikacji został przetworzony funkcjami: generalizacji, konwersji formatu danych oraz poddany weryfikacji. Generalizację wykonano z zastosowaniem jednostki odniesienia wynoszącej 1 ha dla klas zabudowy i wody oraz 4 ha dla pozostałych klas. Następnie format klasyfikacji został zmieniony z rastrowego na wektorowy, w którym wykonano wygładzenie granic wydzieleń. Klasyfikacja została zakończona weryfikacją wektorowej bazy danych metodą interpretacji wizualnej. Całkowita dokładność klasyfikacji została oceniona na poziomie 94.6%. Po uwzględnieniu zmian wprowadzonych w czasie weryfikacji uzyskano końcową postać bazy danych. Wyniki klasyfikacji obiektowej zostały porównane z wynikami tradycyjnej (pikselowej) klasyfikacji, wykonanej z zastosowaniem algorytmu tzw. klasyfikacji hybrydowej, składającej się z następujących po sobie klasyfikacji nadzorowanej i nienadzorowanej. Rozpoznano jedynie 8 klas pokrycia i użytkowania ziemi. Dokładność tradycyjnej klasyfikacji oceniono przez porównanie jej z wynikami klasyfikacji obiektowej. Uzyskano wyniki na niskim poziomie, wynoszącym jedynie 72% i 61%, w zależności od przyjętej metody oceny.
Źródło:
Journal of Water and Land Development; 2006, 10; 91-106
1429-7426
2083-4535
Pojawia się w:
Journal of Water and Land Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Differentiation between forms of urban development using the object-oriented classification method with Central Warsaw as the example
Autorzy:
Zaremski, Karol
Szmajda, Dorota
Powiązania:
https://bibliotekanauki.pl/articles/2032468.pdf
Data publikacji:
2006-06-01
Wydawca:
Uniwersytet Warszawski. Wydział Geografii i Studiów Regionalnych
Tematy:
object-oriented classification
land cover
land use
urbanized areas
Ikonos
Warsaw
eCognition
segmentation
classification
Opis:
The aim of the paper is to present automated methods of discrimination of urban development forms using object-oriented classification in high-resolution images taken by the Ikonos satellite. The object-oriented classification makes possible to describe individual classes using not only the spectral reflection values but also the shapes, textures and topology of objects. The classification process as such is based on the theory of fuzzy sets. The research covered an area of 25 km,., situated in central Warsaw. As a result of object-oriented classification, five classes of development typical of large cities were distinguished and described.
Źródło:
Miscellanea Geographica. Regional Studies on Development; 2006, 12; 315-327
0867-6046
2084-6118
Pojawia się w:
Miscellanea Geographica. Regional Studies on Development
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie metody parametrycznej w klasyfikacji obiektowej obrazu satelitarnego SPOT
Application of rule-based approach to object-oriented classification of SPOT satellite image
Autorzy:
Lewiński, S.
Bochenek, Z.
Powiązania:
https://bibliotekanauki.pl/articles/130535.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
SPOT
pokrycie ziemi
użytkowanie ziemi
object-oriented classification
land use
land cover
Opis:
W artykule przedstawione są wyniki klasyfikacji obiektowej zdjęcia satelitarnego SPOT, o rozdzielczości przestrzennej 20 m. W klasyfikacji zastosowano zasady postępowania zbliżone do stosowanych w metodzie tzw. drzewa decyzyjnego. Podstawowe klasy pokrycia terenu są identyfikowane podczas sekwencji niezależnych procesów, w czasie których analizowane są obiekty jeszcze niesklasyfikowane w toku poprzednich procesów. Dodatkowo przyjęto założenie wykonania klasyfikacji bez stosowania metody Najbliższego Sąsiada (dostępnej w oprogramowaniu eCognition). Treść zdjęcia satelitarnego została podzielona z zastosowaniem parametrów charakteryzujących w sposób bezpośredni obiekty. Wykorzystano również specjalnie w tym celu opracowane funkcje. Algorytm postępowania rozpoczyna się od rozpoznania klasy wody, której obiekty są definiowane w wyniku procesu wielopoziomowej segmentacji. Następnie wykonywana jest nowa segmentacja dla pozostałych klas. Z treści zdjęcia zostaje wydzielana ogólna klasa lasów a po niej zabudowa; obie klasy dzielone są później na podklasy. Pozostałe, jeszcze nierozpoznane, obiekty dzielone są na łąki i pola. W drugim etapie klasyfikacji, na podstawie już sklasyfikowanych obiektów wyłaniane są dodatkowe klasy: tereny podmokłe, działki i sady, zieleń miejska, place budów oraz zmiany w lesie. W sumie rozpoznano 13 klas. Końcowy wynik klasyfikacji został opracowany z zastosowaniem procedury generalizacji mającej na celu uzyskanie danych spełniających kryterium jednostki odniesienia o wielkości 4 ha. Całkowita dokładność klasyfikacji wyniosła ponad 89%.
The paper presents results of object-oriented classification of whole 20-meter resolution SPOT scene covering the Kujawy region. The classification approach applied in this work was similar to that used in the so-called decision tree method. The main land cover classes were identified in a sequence of independent processes, assuming that each subsequent process deals solely with objects not classified yet. Another assumption was to implement rule-based approach rather than the Standard Nearest Neighbor classifier (available in eCognition software). In this approach, contents of satellite image were characterized by various spectral/texture parameters directly describing individual land cover/land use classes; in addition, by pre-defined functions, determined on the basis of graphical analysis of feature space constructed for particular terrain objects were used. The classification process begins with recognition of water class the objects of which were delineated using multiresolution segmentation. New segmentation is prepared for the remaining land cover classes. Subsequently, the general forest class and the urban class are discriminated; at the next stage, both classes are divided into sub-categories. Consequently, broad agricultural and grassland classes are determined. At the second stage of classification, more detailed classes are discriminated within the general land cover categories: wetlands, orchards, urban green areas, construction sites, and deforestations. Overall, 13 land cover/land use categories were discriminated in the work presented. The final classification map was prepared using the aggregation procedure to obtain a map resolution fulfilling the 4ha size of Minimum Mapping Unit. The accuracy was assessed using the method of randomly distributed points; the number of points assigned to each class for checking was proportional to the acreage of that class. The overall accuracy of all classes checked in the verification process reached 89%. The method presented was applied to two other test sites in Poland: the regions of Podlasie and Wielkopolska. Despite differences in land cover/land use patterns, both regions were classified with a comparable, high accuracy.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 355-364
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wybrane przykłady wykorzystania morfologii matematycznej w przetwarzaniu obrazów w teledetekcji
Selected examples of applying mathematical morphology to image processing in remote sensing
Autorzy:
Kupidura, P.
Marciniak, J.
Koza, P.
Kowalczyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/130834.pdf
Data publikacji:
2008
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
morfologia matematyczna
filtracja obrazu
klasyfikacja obiektowa
wykrywanie krawędzi
mathematical morphology
image filtration
object-oriented classification
edge detection
Opis:
Morfologia matematyczna stanowi zbiór nieliniowych operacji, umożliwiających zmianę struktury obrazu cyfrowego. Jej specyficzna natura pozwala na przetwarzanie obrazów w zależności od kształtu, wielkości, tekstury czy sąsiedztwa obiektów obecnych na zdjęciu. W artykule przedstawiono wyniki uzyskiwane w projekcie MNiSzW Nr N526 034 32/3448, poświęconym w całości wykorzystaniu operacji morfologicznych w przetwarzaniu danych teledetekcyjnych. Wnioski wynikające z przeprowadzonych badań potwierdzają wysoką skuteczność morfologii matematycznej w wielu różnorodnych zastosowaniach, jak filtracja dolnoprzepustowa, wydzielanie na obrazie heterogenicznych typów obiektów, czy wykrywanie krawędzi obiektów. W artykule przedstawiono analizę możliwości wykorzystania funkcji morfologicznych w przetwarzaniu danych teledetekcyjnych. Zaprezentowano również założenia darmowego oprogramowania BlueNote, tworzonego w ramach projektu.
The paper presents results of a research project concerning the application of mathematical morphology in remote sensing. Mathematical morphology was developed created in the 1960s by two Fench scientists: Jean Serra and George Matheron. Since then, the great progress in this discipline has led to the development of many different operators. Their most important advantage is involving important features of objects in the image, such as size, shape, texture, and neighbourhood. Because of that, selected morphological operators are used in digital image processing in many fields, including remote sensing. However, the analysis shows mathematical morphology to have an even greater potential in this field. The first line of thought presented is the object-oriented classification. The traditional, pixelbased algorithms are often ineffective when classifying selected heterogenic types of land cover. A morphological operator developed by Kupidura, involving a combination of results of opening and closing of the original image, allows to extract the class of orchards by using a simple pixelbased algorithm. The subsequent research showed that granulometric maps, first presented by Serra, which – for each pixel - generate a set of values denoting heterogeneity of the pixel neighbourhood, allow to extract the built-up class in a traditional classification process. The issue in which morphological operators prove their high efficiency is noise removal. Application of alternate filters allows to filter out both optical and microwave images with a high noise level. Noteworthy is that the filters show inpressive results wherever detail preservation is concerned. The project involved also experiments on edge detection with morphological gradient Preliminary results showed a high efficiency of those procedures comperable to Sobel’s gradient. An additional aim of the project was to develop software that would allow running any combination of morphological operators. The software called BlueNote will be available free of charge, which could lead to further increase of applications of mathematical morphology to remote sensing.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2008, 18a; 323-332
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Mapa zmian pokrycia terenu małopolski 1986-2011 wykonana w oparciu o klasyfikację obiektową obrazów satelitarnych Landsat oraz RapidEye
Map of land use / land cover changes in malopolska voivodeship in 1986-2010 created by object based image analysis of Landsat and RapidEye satellite images
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szafrańska, B.
Powiązania:
https://bibliotekanauki.pl/articles/130712.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
Landsat
RapidEye
użytkowanie terenu
pokrycie terenu
analiza przestrzenna
GIS
segmentacja
object-oriented classification
land use
land cover
spatial analysis
temporal analysis
segmenatation
Opis:
Changes in land use / land cover are the result of interaction between natural processes and human activity. Using GIS analysis to estimate the dynamic of these changes we can detect former trends and their simulation in the future. Diagnosed directions of changes can be used e.g. to create local plans of spatial management or region growth policy. Main goal of this study was to diagnose main trends of changes in land use / land cover in Malopolska voivodeship in last 25 years (1986-2010). Results were shown as statistics and map compositions. Project was created based on RapidEye and LANDSAT 5 TM satellite data and aerial imagery from 2009-2010. The best way to process huge amount and various data was to use Object Based Image Analysis (OBIA). As the results of classification we received 10 classes of land use for both terms of analyses (1986-1987 and 2009-2010). Identified classes were: bare soil, grass-covered areas, urban areas, rivers and watercourses, coniferous forest, leaf forest, peatbog, and other areas. Results show, that especially 2 classes arisen much: forest (4.39%) and urban areas (2.40%), mostly at the expanse of agricultural (-3.60%) and grass-covered areas (-1.18%). Based on results we can say, that changes detected in past 25 years in Malopolska region, which we can also notice today, agree with general trends of landscape changes, that we can observe in Poland for the last 3 decades. These general changes are: renewed succession of forest on areas where agricultural production discontinued; also intense development of road infrastructure. Object Based Image Analysis allowed to realize these study for area of more than 15 000 km2 for only a few weeks.
Zmiany pokrycia terenu i użytkowania ziemi są rezultatem wzajemnego oddziaływania na siebie złożonych procesów przyrodniczych oraz społeczno-ekonomicznych. Analizy przestrzenne GIS dynamiki tych zmian umożliwiają wykrycie występujących w przeszłości trendów i procesów oraz ich symulację dla nadchodzącego okresu. Zdiagnozowane kierunki przemian krajobrazu mogą zostać wykorzystane m.in. przy tworzeniu lokalnych planów zagospodarowania przestrzennego, czy generalnie kreowaniu polityki rozwoju regionów. Celem prezentowanego opracowania było zdiagnozowanie głównych trendów przemian pokrycia terenu województwa małopolskiego na przestrzeni ostatnich dwudziestu pięciu lat (19862011) oraz ich statystyczne i graficzne zaprezentowanie w postaci kompilacji map numerycznych. Projekt wykonano w oparciu o dane teledetekcyjne: zobrazowania satelitarne RapidEye i LANDSAT TM oraz lotnicze ortofotomapy (PZGiK) z lat 2009 - 2010. Duża ilość i różnorodność danych wymusiła zastosowanie obiektowego przetwarzania danych teledetekcyjnych, tj. klasyfikacji OBIA (ang. Object Based Image Analysis). W wyniku przeprowadzanej klasyfikacji otrzymano 10 klas pokrycia i użytkowania terenu dla dwóch terminów badawczych (1986-87 oraz 2010-11), tj.: grunty orne, użytki zielone, tereny zurbanizowane, rzeki i cieki, zbiorniki wodne, lasy iglaste, lasy liściaste, zadrzewienia i zakrzewienia, tereny różne oraz torfowiska. Wykazano, iż na obszarze Małopolski wystąpiło znaczne zwiększenie powierzchni lasów (wzrost o 4.4%) oraz terenów zurbanizowanych (wzrost o 2.4%), głównie kosztem powierzchni gruntów rolnych (ubytek o 3.6%) oraz trwałych użytków zielonych (ubytek o 1.2%). Otrzymane wyniki pozwoliły wysunąć wniosek, iż zmiany jakie zachodziły w przeciągu 25 lat oraz te, z którymi wciąż mamy do czynienia w województwie małopolskim, pokrywają się z ogólnymi kierunkami i trendami przemian krajobrazu obserwowanymi w Polsce w ostatnich trzech dekadach, tj. procesami sukcesji wtórnej zbiorowisk leśnych na gruntach, na których zaprzestano produkcji rolnej oraz związanych z inwestycjami infrastruktury drogowej i kolejowej. Zastosowanie automatycznej klasyfikacji obiektowej oraz analiz przestrzennych GIS pozwoliło na realizację opracowania dla obszaru ponad 15.000 km2 w ciągu zaledwie kilku tygodni.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, 25; 273-284
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dokładność NMPT tworzonego metodą automatycznego dopasowania cyfrowych zdjęć lotniczych
Accuracy of DSM based on digital aerial image matching
Autorzy:
Kubalska, J.L.
Preuss, R.
Powiązania:
https://bibliotekanauki.pl/articles/130251.pdf
Data publikacji:
2013
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
NMPT
true ortho
modele 3D miast
klasyfikacja obiektowa
cyfrowe dopasowanie obrazów
ALS
cyfrowe zdjęcia lotnicze
DSM
3D city models
object-oriented classification
Matching
digital aerial images
Opis:
NMPT stanowią w bazach danych GIS coraz częściej samodzielny produkt, jak również są niezbędnymi danymi inicjalnymi do tworzenia innych produktów takich jak modele 3D miast, true-ortho czy klasyfikacja obiektowa. W niniejszym artykule prezentowane są wyniki badań praktycznych generowania NMPT na potrzeby klasyfikacji zieleni na terenach zurbanizowanych. Posiadane dane źródłowe pozwoliły na wytworzenie potrzebnego produktu zarówno stosując metodę automatycznego dopasowania cyfrowych zdjęć wykonaną kamerą Ultra Cam-D firmy Vexel, jak również poprzez przetwarzanie chmury punktów zarejestrowanych techniką lotniczego skaningu laserowego (ALS). Do utworzenia NMPT z zastosowaniem techniki automatycznego dopasowania zastosowano program Match –T DSM firmy INPHO. Program ten optymalizuje konfiguracje stereogramów z bloku wykorzystywanych zdjęć do tego procesu, co gwarantuje wysoką dokładność wysokościową wyznaczanych punktów i minimalizuje obszary martwych pól. Ocena uzyskanej dokładności wysokościowej punktów metodą matchingu została dokonana poprzez porównanie NMPT wytworzonego programem Match–T DSM z modelem wygenerowanym na podstawie danych lidarowych. Dalsze przeznaczenie tworzonego NMPT zadecydowało, że został on utworzony w siatce GRID o wymiarze oczka siatki 1m. Przy takich parametrach wyznaczono model różnicowy, który pozwolił na wyznaczenie dokładności względnej porównywanych modeli. Przeprowadzona analiza wskazuje, że generowanie NMPT techniką automatycznego dopasowania cyfrowych zdjęć jest konkurencyjne względem modeli opracowanych z chmury punktów pozyskanej techniką ALS. Dlatego też jeżeli na dany obszar terenu wykonywane są cyfrowe zdjęcia lotnicze o geometrii minimalizującej w praktyce obszary martwych pól dodatkowa rejestracja przy pomocy techniki skaningu laserowego wydaje się zbędna.
Digital Surface Models (DSM) areused inGISdatabasesas single product more often. They are also necessary to create otherproducts such as3D city models, true-ortho and object-orientedclassification. This article presents results of DSM generatation for classification of vegetation in urban areas. Source data allowed producing DSM with using of image matching method and ALS data. The creation of DSM from digital images, obtained by Ultra Cam-D digital Vexcel camera, was carried out in Match-T by INPHO. This program optimizes theconfiguration ofimages matching process, which ensures high accuracy andminimize gap areas. The analysis of the accuracy of this process was made by comparison of DSM generated in Match-T with DSM generated from ALS data. Because of further purpose of generated DSM it was decided to create model in GRID structure with cell size of 1 m. With this parameter differential model from both DSMs was also built that allowed determining the relative accuracy of the compared models. The analysis indicates that the generation of DSM with multi-image matching method is competitive for the same surface model creation from ALS data. Thus, when digital images with high overlap are available, the additional registration of ALS data seems to be unnecessary.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2013, Spec.; 47-58
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Classement de métonymies et traduction automatique
Classification of metonymy and automatic translation
Autorzy:
Czekaj, Anna
Powiązania:
https://bibliotekanauki.pl/articles/1789355.pdf
Data publikacji:
2020-12-23
Wydawca:
Wydawnictwo Uniwersytetu Śląskiego
Tematy:
Metonymy
automatic translation
object-oriented approach
lexicographic description
object class
attributes
operators
frame
classification
Opis:
The paper is a continuation of the author’s previous work regarding the legitimacy of metonymy classification for the needs of automatic translation. The author attempts to solve the problem presented in the paper entitled Classification of metonymy and its usefulness in automatic translation and proposes her classification of metonymic expressions, which could be a helpful tool in computer translation.
Źródło:
Neophilologica; 2020, 32; 192-209
0208-5550
2353-088X
Pojawia się w:
Neophilologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Content Repository in Object Oriented data model
Autorzy:
Dobrowolski, D.
Chromiak, M.
Powiązania:
https://bibliotekanauki.pl/articles/106182.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
content repository
e-learning
classification of e-learning content
standards
content management
prospective object-oriented database
Opis:
The need for creating content repository stores for e-learning systems grows as the number of available materials increases. Moreover, along with the number of courses, the problem of describing them in a unified form appears. While there are standards used for strict classification of e-learning content, the store model still seems to be based on preservative relational databases approach. In this paper we introduce an idea to represent the e-learning content management information in the well organized object-oriented form based on a prospective object-oriented database.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica; 2013, 13, 1; 17-27
1732-1360
2083-3628
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska. Sectio AI, Informatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-10 z 10

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies