Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "object-based image analysis" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
Monitoring the secondary forest succession and land cover/use changes of the Błędów Desert (Poland) using geospatial analyses
Autorzy:
Szostak, Marta
Wężyk, Piotr
Hawryło, Paweł
Puchała, Marta
Powiązania:
https://bibliotekanauki.pl/articles/1052864.pdf
Data publikacji:
2016-09-15
Wydawca:
Uniwersytet im. Adama Mickiewicza w Poznaniu
Tematy:
LULC changes
Geographic Object Based Image Analysis (GEOBIA)
pixel-based classification
GIS analyses
secondary forest succession
Opis:
The role of image classification based on multi-source, multi-temporal and multi-resolution remote sensed data is on the rise in the environmental studies due to the availability of new satellite sensors, easier access to aerial orthoimages and the automation of image analysis algorithms. The remote sensing technology provides accurate information on the spatial and temporal distribution of land use and land cover (LULC) classes. The presented study focuses on LULC change dynamics (especially secondary forest succession) that occurred between 1974 and 2010 in the Błędów Desert (an area of approx. 1210 ha; a unique refuge habitat – NATURA 2000; South Poland). The methods included: photointerpretation and on screen digitalization of KH-9 CORONA (1974), aerial orthoimages (2009) and satellite images (LANDSAT 7 ETM+, 1999 and BlackBridge – RapidEye, 2010) and GIS spatial analyses. The results of the study have confirmed the high dynamic of the overgrowth process of the Błędów Desert by secondary forest and shrub vegetation. The bare soils covered 19.3% of the desert area in 1974, the initial vegetation and bush correspondingly 23.1% and 30.5%. In the years 2009/2010 the mentioned classes contained: the bare soils approx. 1.1%, the initial vegetation– 8.7% and bush – 15.8%. The performed classifications and GIS analyses confirmed a continuous increase in the area covered by forests, from 11.6% (KH-9) up to 24.2%, about 25 years later (LANDSAT 7) and in the following 11 years, has shown an increase up to 35.7% (RapidEye 2010).
Źródło:
Quaestiones Geographicae; 2016, 35, 3; 5-13
0137-477X
2081-6383
Pojawia się w:
Quaestiones Geographicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie obiektowo zorientowanej analizy obrazu (GEOBIA) wysokorozdzielczych obrazów satelitarnych w klasyfikacji obszaru miasta Krakowa
Using the object-based image analysis (GEOBIA) in the classification of the very high resolution satellite images of Krakow municipality
Autorzy:
Wężyk, P.
de Kok, R.
Szombara, S.
Powiązania:
https://bibliotekanauki.pl/articles/130169.pdf
Data publikacji:
2007
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa (GEOBIA)
Ikonos
QuickBird
automatyzacja
pokrycie terenu
OBIA (Object Based Image Analysis)
automation
land use
Opis:
Technologie teledetekcyjne oraz systemy GIS osiągnęły obecnie poziom rozwoju umożliwiający pełna implementacje automatycznych metod klasyfikacji oraz procesów kontroli i aktualizacji zasobów kartograficznych będących w posiadaniu administracji publicznej. Dane teledetekcyjne pozyskiwane nowoczesnymi metodami takimi jak: lotnicze kamery cyfrowe, skanery hiperspektralne, LiDAR badz VHRS - pozwalają na poprawne skonstruowanie procesu wspomagania podejmowania decyzji na poziomie lokalnym i regionalnym takich jak np. miejscowe plany zagospodarowania przestrzennego. Ogromne zbiory danych (np. LiDAR, VHRS) muszą być coraz częściej poddawane automatycznym procesom ich przetwarzania. Obiektowo zorientowana analiza obrazu (ang. Object Based Image Analysis; akronim: GEOBIA) - zwana potocznie klasyfikacja obiektowa, wykorzystuje zaawansowane algorytmy segmentacji rastra. Rozstrzygają one o liczbie generowanych obiektów na podstawie wartości jaskrawości piksela oraz „właściwości geometrycznych” (np. kształtu, grupowania się pikseli w homogeniczne obiekty, zwartości, etc). W kolejnych krokach obiekty te są klasyfikowane na podstawie licznych zależności i właściwości, jak np. parametru homogeniczności czy stosunku długości granic do powierzchni (wykrywanie krawędzi, budynków, działek etc). Klasyfikacja obiektowa może przyjąć strukturę hierarchiczna, to znaczy raz sklasyfikowane obiekty mogą posłużyć do stworzenia nowego wyższego hierarchicznie poziomu. Taka metodyka pozwala na przygotowanie scenariuszy postepowania klasyfikacyjnego zapisywanych do plików zwanych protokołami w oprogramowaniu DEFNIENS. Nowatorskie podejście do kwestii klasyfikacji obrazu bez potrzeby wykorzystywania pól treningowych zostało już potwierdzone wieloma projektami naukowymi i ich wdrożeniami (Wężyk, de Kok, 2005; de Kok, Wężyk, 2006). W prezentowanej pracy do przeprowadzenia klasyfikacji wykorzystano 2 sceny IKONOS z dnia 25.06.2005 roku (łączny obszar 194,7 km2) oraz 1 scenę QuickBird z dnia 07.09.2006 roku (167,7 km2). Prace zostały zlecone przez Biuro Planowania Przestrzennego UM Krakowa w listopadzie 2006 roku. Obrazy VHRS poddano ortorektyfikacji (Aplication Master 5.0, Inpho) w oparciu o współczynniki RPC ale także punkty dostosowania GCP pozyskane z ortofotomap Phare 2001 oraz NMT przekazanego przez BPP UMK (Wężyk et al., 2006). Do analizy obrazów VHRS wykorzystano kanał panchromatyczny (PAN) oraz wielospektralne (MS) zakresy promieniowania. Wstępne przetwarzanie kanałów PAN polegało na zastosowaniu filtrów krawędziowych (np. Lee Sigma), w wyniku działania których otrzymano tzw. obrazy pochodne wykorzystane w procesie segmentacji. Inne obrazy biorące udział w tym złożonym procesie składającym się z 11 kroków to: poszczególne kanały MS (Blue, Green, Red, NIR), dla których wykonano analizę głównych składowych (ang. Principal Component Analysis), mapa ewidencyjna (obraz rastrowy) wykorzystywana w projekcie kartowania zieleni rzeczywistej Krakowa (służąca głównie klasyfikacji budynków przy wykorzystaniu PC3), rastrowa warstwa sieci dróg pochodząca z wektoryzacji ekranowej VHRS i z map ewidencyjnych. W toku uzgodnień z BPP UMK podjęto decyzje o przyjęciu dwóch poziomów hierarchicznych klas pokrycia terenu. Poziom 1 składał się z 9-ciu klas zajmujących odpowiednio: tereny zainwestowane – 17,42%, zieleń wysoka – 24,99%, zieleń niska – 44,31%, zieleń terenów sportowych oraz ogródków działkowych – 1,39%, zbiorniki wodne i rzeki – 1,94%, infrastruktura drogowa – 3,48%, hałdy + wysypiska + odsłonięta gleba – 0,84%, grunty orne i uprawy – 5,35% oraz cień – 0,28% obszaru badan. Trzy klasy poziomu 1, tj.: tereny zainwestowane, zieleń niska i zieleń wysoka) zdecydowano się zaprezentować na wyższym – 2 poziomie szczegółowości. Wraz z pozostałymi klasami poziom ten składał się łącznie z 22 klas. Osiągnięte rezultaty potwierdziły szerokie możliwości stosowania automatycznych metod OBIA bazujących na VHRS i innych informacjach pochodzących z systemów GIS oraz z zasobów geodezyjnokartograficznych w celu ich aktualizacji.
Recent developments in Remote Sensing and GIS have reached maturity which allows to implement the research results into standardized process flows for updating and checking the municipality cadastral information. The database containing the city cadastre already handles data fusion methods itself. Available information considerably enhance information extraction from new data collections with high quality sensors such as LiDAR, photogrammetrical imagery and VHRS data. Huge amounts of available data must be processed in sequences to keep them handable. Transferable protocols for automatic handling of VHRS data can now be put into a full production process to assist the workflow of other image data from airborne platforms and integrate these GIS output into further cadastral GIS analysis. The data fusion within this project allows a highly detailed description of the city status-quo and the basis for change detection. Further these results are besides a very important archival inventory also a basis for decision support, now and in the future. The whole workflow was of a chain of previous research projects which were put into a commercial workflow. This study shows an experience report on, how the product chain was built-up and what type of products were delivered to the municipality of Krakow (Poland).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2007, 17b; 791-800
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja zorientowana obiektowo w inwentaryzacji obiektów Zielonej Infrastruktury na przykładzie dzielnicy Ursynów w Warszawie
Object-oriented classification in the inventory of Green Infrastructure objects on the example of the Ursynów district in Warsaw
Autorzy:
Pyra, M.
Adamczyk, J.
Powiązania:
https://bibliotekanauki.pl/articles/132279.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Geograficzne
Tematy:
teledetekcja
klasyfikacja obiektowa
zielona infrastruktura
planowanie przestrzenne
remote sensing
Geographic Object-Based Image Analysis
green infrastructure
spatial management
Opis:
Zielona Infrastruktura jest koncepcją zintegrowanego podejścia do funkcjonalnego i przestrzennie powiązanego planowania obszarów zurbanizowanych wraz z ochroną elementów środowiska, która na przestrzeni ostatnich lat została doceniona przez podmioty odpowiedzialne za planowanie przestrzenne. Niniejsza praca przedstawia możliwości wykorzystania przetworzeń zobrazowań satelitarnych metodami klasyfikacji obiektowej w inwentaryzacji, planowaniu i monitorowaniu obiektów Zielonej Infrastruktury. Do tego celu wykorzystano zobrazowanie satelitarne pozyskane przez satelitę Pleiades w maju 2012 roku, reprezentujące obszar części dzielnicy Ursynów m.st. Warszawy. Wykorzystane w pracy metody klasyfikacji obiektowej wykazały wysoką efektywność w realizacji założonych zadań.
Green Infrastructure is a conception of an integrated approach to functional and spatially related planning of urban areas, along with environmental protection, which in recent years has been appreciated by spatial planning specialists. This study presents the capabilities of using satellite image processing with Geographic Object-Based Image Analysis methods in the inventory, planning and monitoring of Green Infrastructure objects. For this purpose, a satellite image acquired by the Pleiades satellite in May 2012, representing the area of a part of the Ursynów district of the capital city of Warsaw, was used. The object-oriented classification methods used in this work showed high effectiveness in the implementation of the tasks defined.
Źródło:
Teledetekcja Środowiska; 2018, 59; 29-49
1644-6380
Pojawia się w:
Teledetekcja Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Aktualizacja mapy glebowo-rolniczej z wykorzystaniem klasyfikacji obiektowej (OBIA) zobrazowań teledetekcyjnych oraz analiz przestrzennych GIS
Update of the digital soil map using object based image analysis (OBIA) of remote sensing data and GIS spatial analyses
Autorzy:
Wężyk, P.
Pierzchalski, M.
Szafrańska, B.
Kortas, G.
Powiązania:
https://bibliotekanauki.pl/articles/129994.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
mapa glebowo-rolnicza
klasyfikacja obiektowa
OBIA
aktualizacja
analiza przestrzenna GIS
soil map
object-based image analysis
map up-date
spatial GIS analysis
Opis:
Aktualność map glebowo-rolniczych w Polsce sięga najczęściej lat sześćdziesiątych poprzedniego wieku, stąd wymagają one nie tylko konwersji z formy analogowej (papierowej) do cyfrowej, ale przede wszystkim weryfikacji treści w stosunku do rzeczywistych klas pokrycia i użytkowania terenu. Rozwój miast, wsi, dróg i innych inwestycji infrastrukturalnych, jaki nastąpił w minionych 50 latach oraz nasilenie się w ostatniej dekadzie procesów socjoekonomicznych skutkujących porzucaniem upraw rolnych i zajmowania tych terenów przez lasy, spowodował dużą dezaktualizację treści geometrycznej mapy glebowo-rolniczej. Przeprowadzenie weryfikacji treści geometrycznej mapy glebowo-rolniczej dla skali województwa małopolskiego wymagało zastosowania obiektowej klasyfikacji (OBIA, ang. Object Based Image Analysis) aktualnych zobrazowań teledetekcyjnych. Proces OBIA realizowano w oprogramowaniu eCognition Developer 8.64 (Trimble GeoSpatial). Należało go możliwie daleko zautomatyzować ze względu na dużą powierzchnię opracowania (ok. 15000 km2). Otrzymane wyniki skontrolowano na podstawie kilkuset powierzchni referencyjnych (wektoryzacja ekranowa dokonana przez operatora). Analizy przestrzenne GIS aktualizujące przebieg poligonów mapy glebowo-rolniczej o nowe powstałe obiekty zrealizowano w trybie wsadowym (Model Builder, Esri). Uzyskane wyniki wykazały, iż największe zmiany, tj. przyrost powierzchni (procentowo) zanotowano w przypadku klas: „Las” (Ls; +8.2%) oraz „Tereny zabudowane” (Tz; +6.3%), przy jednoczesnym ubytku wszystkich kompleksów (ID 1÷13) wykorzystywanych pod uprawy rolne o -10.5% (z czego -4.9% w rejonach górskich). Ubytek trwałych użytków zielonych (1z, 2z oraz 3z) na zaktualizowanej mapie glebowej oceniona na około (-4.2%). Zastosowane algorytmy weryfikacyjne oraz aktualizacyjne pozwalają stwierdzić, iż klasyfikacja obiektowa OBIA aktualnych zobrazowań teledetekcyjnych (satelitarnych i lotniczych) w połączeniu z daleko zautomatyzowanymi analizami przestrzennymi GIS może być wykorzystywana w procesie aktualizacji mapy glebowo-rolniczej.
The analogue soil maps (paper sheets; scale 1:5000) were made in Poland most likely in the 60-ties of XX century. Today, they need not only conversion from analogue form to digital (raster or vector) format but also quick and objective map revision. Soil maps become outdated and they don't represent actual land use or land cover (LULC). Rapid growth of cities and the country side development as well as infrastructure constructions have to be included in up-dated soil map. During the last 50 years in Małopolska Voivodeship, many hectares of arable land were abandoned and changed in natural way (succession) in to the class forest. In year 2010 the Marshal office of Małopolska Voivodeship decide to convert the archive of analogue soil map to shape file with connected database. In 2011 another project was started with main goal of up-date of the soil map (about 15 000 km2). The special work-flow of geoinformation technologies was used for fulfill this goal. Object Based Image Analysis (OBIA) meets the criteria for fast and accurate Land Use & Land Cover (LULC) classification method of the RapidEye (from years 2010/2011) high resolution satellite images. Application of this object based classification method, together with GIS analysis ensures very high degree of work automation. The results obtained shows, that the most changes in a land cover were observed in urban areas (Tz; +6.3%) and forests (Ls; + 8.2%). The area of all other agricultural used soil complexes decreased in the same time about -10.5% (in the mountainous areas approx. -4.9%). The class pastures and meadows also decrease during the last 50 years about -4.2%. This project demonstrates success story of using the modern GIS techniques to verify and update soil map of Małopolska Voivodeship based on the OBIA of RapidEye satellite imaginary and aerial orthophotomaps (RGB).
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 477-488
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wzmocnienie procesu klasyfikacji obiektowej wielospektralnych ortofotomap lotniczych danymi z lotniczego skanowania laserowego
Enhancing the obia classification of multispectral aerial orthoimages using airborne laser scanning data
Autorzy:
Wężyk, P.
Mlost, J.
Pierzchalski, M.
Wójtowicz-Nowakowska, A.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/129858.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
klasyfikacja obiektowa
OBIA
ortofotomapa cyfrowa
lotniczy skaning laserowy
projekt ISOK
object-based image analysis
digital aerial orthophoto
Airborne Laser Scanning
ISOK
Opis:
Klasyfikacja obiektowa (OBIA, ang. Object Based Image Analysis) jest nowatorską metodą analizy zobrazowań teledetekcyjnych, w której homogeniczne obiekty (segmenty), na które podzielony został obraz (za pomocą specyficznych algorytmów) poddawane są klasyfikacji. Dotychczasowe projekty wykazały, iż OBIA przeprowadzana na wysokorozdzielczych i wielospektralnych lotniczych ortofotomapach cyfrowych, wspierana modelami wysokościowymi, prowadzi do uzyskania bardzo dokładnych wyników. Stosunkowo niewiele prac koncentruje się na określeniu wpływu produktów pochodnych chmury punktów lotniczego skanowania laserowego (ang. Airborne Laser Scanning), takich jak wartość: odchylenia standardowego wysokości, gęstości punktów czy intensywności odbicia, na poprawę wyników klasyfikacji OBIA. W prezentowanej pracy poddano ocenie wzmocnienie procesu klasyfikacji OBIA danymi ALS na podstawie dwóch transektów badawczych („A” oraz „B”) o powierzchni 3 km2, położonych w okolicach Włocławka. Celem końcowym procesu analizy OBIA było uzyskanie aktualnej mapy klas pokrycia terenu. W opracowaniu wykorzystano lotnicze ortofotomapy cyfrowe oraz dane z lotniczego skaningu laserowego, pozyskane na przełomie sierpnia I września 2010 roku. Na podstawie punktów danych ALS wygenerowano warstwy pochodne takie jak: liczba odbić, intensywność, odchylenie standardowe, jak również wygenerowano znormalizowany Numeryczny Modelu Powierzchni Terenu (zNMPT). W wariancie pierwszym „I” wykorzystano dane uzyskane wyłącznie w nalocie fotogrametrycznym, tj. wielospektralne ortofotomapy lotnicze (kamera Vexcel) oraz indeksy roślinności (w tym NDVI i in.). Wariant drugi prac ”II” zakładał wykorzystanie dodatkowo danych z lotniczego skaningu laserowego. Określona dokładność klasyfikacji OBIA wykonanej w oparciu o cyfrową ortofotomapę lotniczą wyniosła 91.6% dla transektu badawczego „A” oraz 93.1% dla transektu „B”. Użycie danych ALS spowodowało podniesienie dokładności ogólnej do poziomu 95.0% („A”) oraz 96.9% („B”). Praca wykazała, iż zastosowanie danych ALS podnosi dokładność klasyfikacji segmentów o bardzo zbliżonych właściwościach spektralnych (np. rozróżnienie powierzchni dużych, płaskich dachów budynków od parkingów czy klas roślinności niskiej od średniej i wysokiej. Wprowadzenie warstw pochodnych ALS do procesu segmentacji poprawia także kształt powstających obiektów a tym samym klas końcowych. Analiza „surowych” danych ALS w postaci plików w formacie LAS otwiera dodatkowe możliwości, których nie daje wykorzystywanie rastrowych warstw takich jak zNMPT. Pojawiająca się w nowej wersji oprogramowania eCognition (TRIMBLE) możliwość operowania segmentami przestrzennymi jeszcze te możliwości klasyfikacji podnosi. Niewątpliwie sporym problemem w integracji informacji spektralnej (ortoobraz) oraz geometrycznej (ALS) jest efekt rzutu środkowego skutkujący przesunięciami radialnymi dla wysokich obiektów leżących w znacznej odległości od punktu głównego zdjęcia.
Object Based Image Analysis (OBIA) is an innovative method of analyzing remote sensing data based not on the pixels, but on homogenous features (segments) generated by specific algorithms. OBIA based on high-resolution aerial orthophotography and powered by digital terrain models (nDSM) brings high accuracy analysis. Not many scientific papers brings implementation of ALS point cloud directly into OBIA image processing. Paper present study done on two test areas of approx. 3 km2, situated close to Wloclawek, representing different land use classes (transect “A” – urban area; transect “B” – rural and forest landscape). Geodata (digital aerial orthophotographs and Airborne Laser Scanning data) were captured almost at the same time (September 2010). Different raster layers were created from *. LAS file, like: intensity, number of returns, normalized elevation (nDSM). Two version (I and II) of OBIA classification were performed. First version (I) based only on aerial orthophotographs and different coefficients (like NDVI). Second variant of OBIA (wariant II) based additionally on ALS data. Total accuracy of variant I was 94.1% (transect “A”) and 92.6% (transect “B”). OBIA classification powered by ALS data provide to increase of the results up to 96.9% (transect “A”) and 95.0% (transect “B”) as well. Classification of objects with similar type of surface properties (like buildings and bare soil) was much better using ALS information. The ALS data improve also the shape of objects, that there are more realistic. Data fusion in OBIA processing brings new capabilities,. These capabilities are bigger thanks to processing based on 3-dimensional segments. The results of analysis would be more accurate, when orthoimages (“true ortho”) would be used, instead of standard orthophotographs. The running ISOK project in Poland will bring soon a huge data set (approx. 150 TB) of ALS and photogrammetry connected products. This situation requires suitable software to analyze it fast and accurate on the full automatic way. The OBIA classification seems to be a solution for such challenge.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 467-476
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Klasyfikacja pokrycia terenu metodą OBIA z wykorzystaniem zobrazowań satelitarnych RapidEye
Land cover mapping based on OBIA of RapidEye satellite data
Autorzy:
Wężyk, P.
Wójtowicz-Nowakowska, A.
Pierzchalski, M.
Mlost, J.
Szwed, P.
Powiązania:
https://bibliotekanauki.pl/articles/131104.pdf
Data publikacji:
2012
Wydawca:
Stowarzyszenie Geodetów Polskich
Tematy:
wysokorozdzielcze zobrazowania satelitarne
RapidEye
analiza obiektowa obrazu
OBIA
segmentacja
eCognition
pokrycie terenu
high-resolution satellite images
object-based image analysis
segmentation
land use
land cover
Opis:
Wraz z rozwojem teledetekcji i wysokorozdzielczych obrazów satelitarnych istotnym wyzwaniem dla współczesnych badań stało się zautomatyzowanie procesu klasyfikacji pozyskiwanych danych. Jedną z bardzo szybko rozwijających się metod automatycznej klasyfikacji jest analiza obiektowa obrazu (OBIA, ang. Object Based Image Analysis). Celem pracy było wykorzystanie metody OBIA w przygotowaniu aktualnej mapy pokrycia terenu będącej ważnym elementem dokumentacji niezbędnej dla studium uwarunkowań budowy nowej hydroelektrowni na środkowym odcinku Wisły. W pracy wykorzystano wysokorozdzielcze zobrazowania satelitarne RapidEye (5 kanałów spektralnych, w tym dwa w zakresie NIR) pokrywające obszar około 5.300 km2 oraz oprogramowanie eCognition (TRIMBLE Geospatial) a także warstwy informacyjne GIS. W wyniku przeprowadzonych analiz uzyskano mapę pokrycia terenu reprezentowaną przez 29 klas. Największą powierzchnię terenu badań zajmują obszary użytkowane rolniczo (59.5%, z czego 35.5% grunty orne) oraz lasy (29.1%, z czego 21.4% drzewostany iglaste), co świadczy o charakterze tej jednostki fizjograficznej. Analiza dokładności uzyskanych wyników wykazała, iż metoda OBIA daje bardzo dobre rezultaty (współczynnik Kappa równy 0.8) w daleko zautomatyzowanym procesie generowania aktualny map pokrycia terenu dla obszarów centralnej Polski na podstawie obrazów satelitarnych RapidEye.
Parallel with the development of remote sensing and high resolution satellite images major challenge for modern research has become almost to automate the classification of the data obtained. One of the most rapidly developing methods for automatic classification is object-oriented image analysis (OBIA, Object Based Image Analysis). The aim of the present study was to use the OBIA method to create the current land cover map which is part of the documentation necessary for new water power-station on the middle part of Vistula river. In this paper the RapidEye satellite images (5 spectral bands, two in the NIR range) covering an area of about 5 300 km2 and eCognition Developer (TRIMBLE) software were used. As a result of the analysis and land cover map was obtained, represented by 29 classes. The largest area is covered by agricultural land (59.5%; arable land – 35.52%) and forests (29.1%; mainly coniferous 21.4%), reflecting the rural – forestry character of the area. Analysis of the accuracy of the obtained results has shown that the OBIA method gives quite good results (Kappa coefficient equal to 0.8) for land cover mapping of central part of Poland based on the RapidEye imageries.
Źródło:
Archiwum Fotogrametrii, Kartografii i Teledetekcji; 2012, 23; 489-500
2083-2214
2391-9477
Pojawia się w:
Archiwum Fotogrametrii, Kartografii i Teledetekcji
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies