Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "ołów i jego związki nieorganiczne" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Ołów i jego związki nieorganiczne : metoda oznaczania w powietrzu na stanowiskach pracy
Lead and its inorganic compounds : method of determining in workplace air
Autorzy:
Surgiewicz, J.
Powiązania:
https://bibliotekanauki.pl/articles/958178.pdf
Data publikacji:
2016
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ołów i jego związki nieorganiczne
metoda oznaczania
absorpcyjna spektrometria atomowa
narażenie zawodowe
atomic absorption spectrometry
occupational exposure
lead
lead inorganic compounds
method for the determination
Opis:
Ołów jest miękkim i plastycznym metalem barwy niebieskoszarej. W przemyśle jest stosowany jako składnik wielu stopów. Ołów jest używany do produkcji: płyt akumulatorowych, kabli oraz ekranów zabezpieczających przed promieniowaniem jonizującym. Ołów i jego związki są silnie trujące. Zatrucie ołowiem powoduje uszkodzenie: układu nerwowego i krwiotwórczego, krążenia i nerek. Kumuluje się głównie w kościach. Może działać szkodliwie na dziecko w łonie matki i na rozrodczość. Wartość najwyższego dopuszczalnego stężenia (NDS) dla ołowiu i jego związków nieorganicznych, w przeliczeniu na Pb dla frakcji wdychalnej, została ustalona na poziomie 0,05 mg/m³. Celem pracy było opracowanie metody oznaczania stężeń ołowiu i jego związków nieorganicznych (występujących we frakcji wdychalnej) w powietrzu na stanowiskach pracy w zakresie od 1/10 do 2 wartości NDS, zgodnie z wymaganiami zawartymi w normie europejskiej PN-EN 482. Opracowana metoda polega na: pobraniu ołowiu i jego związków nieorganicznych (zawartych w powietrzu we frakcji wdychalnej aerozolu) na filtr membranowy, mineralizacji filtra z zastosowaniem stężonego kwasu azotowego i ditlenku diwodoru oraz oznaczaniu ołowiu w roztworze przygotowanym do analizy metodą absorpcyjnej spektrometrii atomowej z atomizacją w płomieniu acetylen-powietrze (F-AAS). Metoda umożliwia oznaczenie ołowiu i jego związków nieorganicznych w zakresie stężeń 0,25 ÷ 10,00 μg/ml. Uzyskana krzywa kalibracyjna ołowiu charakteryzuje się wysoką wartością współczynnika korelacji (R = 1,0000). Granica wykrywalności (LOD) wynosi 0,02 µg/ml, natomiast granica oznaczalności (LOQ) – 0,07 µg/ml. Wyznaczony współczynnik odzysku wynosi 0,99. Opracowana metoda pozwala na oznaczanie stężenia ołowiu i jego związków nieorganicznych zawartych w powietrzu (we frakcji wdychalnej) na stanowiskach pracy w zakresie stężeń 0,0035 ÷ 0,139 mg/m³ (dla próbki powietrza o objętości 720 l), co stanowi 0,07 ÷ 2,8 wartości NDS oraz 0,0052 ÷ 0,208 mg/m³ (dla mniejszej próbki powietrza wynoszącej 480 l), co stanowi 0,10 ÷ 4,2 wartości NDS. Opracowana metoda charakteryzuje się dobrą precyzją oraz dokładnością i spełnia wymagania zawarte w normie europejskiej PN-EN 482 dla procedur oznaczania czynników chemicznych. Metoda oznaczania ołowiu i jego związków nieorganicznych została zapisana w postaci procedury analitycznej, którą zamieszczono w załączniku.
Lead is a soft, flexible and grey metal. In industry, it is used as an ingredient of many alloys, jacketing cables, screens protecting against ionizing radiation and battery plates. Lead and its compounds are highly toxic. Lead can cause damage to the nervous, hematopoietic and circulatory systems, and kidneys. It accumulates in bones. It can cause harm to an unborn child and is reprotoxic. The exposure limit values for lead and its inorganic compounds in the working environment, based on Pb for inhalable fraction, are NDS 0.05 mg/m3 . The aim of this study was to develop a method for determining concentrations of lead and its inorganic compounds (in inhalable fraction) in workplace air in the range from 1/10 to 2 NDS values in accordance with the requirements of Standard No. EN 482. This method involves collecting lead and its inorganic compounds (contained in air in the inhalable fraction of aerosol) on a membrane filter, filter mineralization with concentrated nitric acid and dihydrogen dioxide, and determining lead in a solution prepared for analysis with flame atomic absorption spectrometry with atomization in air-acetylene flame (F-AAS). This method enables determination of lead in the concentration range 0.25–10.00 µg/ml. The obtained calibration curve has a high correlation coefficient (R2 = 1.0000). The detection limit for lead (LOD) is 0.02 µg/ ml and the limit of quantification (LOQ) is 0.07 µg/ ml. Determined coefficient of recovery is 0.99. The developed method enables determination of concentrations of lead and its inorganic compounds in the inhalable fraction in workplace air in the concentration range 0.0035–0.139 mg/m3 (for a 720-L air sample), which represents 0.07–2.8 of NDS and 0.0052–0.208 mg/m3 (for a smaller air sample of 480-L), which represents 0.10–4.2 of NDS. The method is accurate, precise and it meets the requirements of Standard No. EN 482 for procedures for determining chemical agents. The method of determining lead and its inorganic compounds has been recorded as an analytical procedure (appendix).
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2016, 3 (89); 147-162
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Ołów i jego związki nieorganiczne, z wyjątkiem arsenianu(V)/ ołowiu(II) i chromianu(VI) ołowiu(II) - w przeliczeniu na ołów, frakcja wdychana. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego
Lead and its inorganic compounds, other than lead arsenate and lead chromate as Pb, inhalable fraction. Documentation of suggested occupational exposure limits (OELs)
Autorzy:
Jakubowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/137817.pdf
Data publikacji:
2014
Wydawca:
Centralny Instytut Ochrony Pracy
Tematy:
ołów i jego związki nieorganiczne
działanie toksyczne ołowiu
toksykokinetyka
podstawy wartości NDS i DSB
lead and its inorganic compound
toxic effects
toxicokinetics
recommended OEL and BEI values
Opis:
Ołów (Pb) jest miękkim srebrzystoszarym metalem. Należy do grupy 14. układu okresowego. Narażenie na ołów występuje zarówno w środowisku pracy, jak i w środowisku życia. W ciągu ostatnich 20, lat istotnemu zmniejszeniu uległo narażenie na ołów w środowisku życia. Zmniejszeniu uległo także w Polsce narażenie na ołów w środowisku pracy. W narażeniu na ołów o stężeniach większych niż wartość najwyższego dopuszczalnego stężenia (NDS), tj. 0,050 mg/m3 pracuje obecnie w Polsce 3297 osób. W 1991 r. osób tych było 5076. Największą liczbę przekroczeń wartości NDS stwierdzano w procesach: produkcji metali (1864 osób), metalowych wyrobów gotowych, z wyłączeniem maszyn i innych urządzeń (340 osób) oraz urządzeń elektronicznych (316 osób). W środowisku pracy główną drogę wchłaniania ołowiu i jego związków stanowi układ oddechowy, jakkolwiek ołów może się wchłaniać także, zależnie o warunków pracy, z przewodu pokarmowego. Deponowanie aerozoli zawierających ołów w płucach zależy od wymiaru cząstek. Wydajność deponowania cząstek aerozolu zawierającego ołów w płucach ocenia się na 30 -s- 50%. Cząstki aerozolu osadzające się w drzewie oskrzelowym ulegają usunięciu do jamy ustnej i mogą ulec połknięciu. Ołów zawarty we frakcji respirabilnej ulega całkowitemu wchłonięciu z płuc. Z przewodu pokarmowego wchłania się około 10% pobranego ołowiu u osób dorosłych i około 50% u dzieci. We krwi około 99% ołowiu ulega wiązaniu z erytrocytami. Około 92% ołowiu zawartego w organizmie deponuje się w kościach. Stężenie ołowiu we krwi (B-Pb) stanowi wypadkową procesów wchłaniania, roz-mieszczenia i wydalania. Stan równowagi stężeń ołowiu we krwi jest osiągany po około 3 miesiącach od rozpoczęcia narażenia. Po przerwaniu narażenia półokres eliminacji ołowiu z krwi i tkanek miękkich wynosi około 30 dni, a z kości 5 + 10 lat. Łożysko nie stanowi bariery dla ołowiu. Wszystkie skutki zdrowotne narażenia na ołów są odnoszone do stężeń ołowiu we krwi. W związku z tym, istotne było określenie zależności między stężeniami ołowiu w powietrzu (A-Pb) i we krwi, która jest zależna od formy chemicznej ołowiu w powietrzu oraz od rodzaju produkcji. Na podstawie uzyska-nych wyników badań wykazano, że zwiększeniu stężenia ołowiu w powietrzu o 1 ug/m3 odpowiada wzrost stężenia ołowiu we krwi w zakresie 0,3 + 1,9 ug/L. Istnieje duża liczba danych dotyczących działania toksycznego ołowiu u ludzi typu dawka- -skutek i dawka-odpowiedź. Dotyczą one zarówno środowiska pracy, jak i środowiska życia. U osób dorosłych za układy krytyczne działania ołowiu uznaje się: układ krwiotwórczy, układ sercowo-naczyniowy, układ nerwowy oraz nerki. U dzieci układem krytycznym jest ośrodkowy układ nerwowy. Wczesne skutki działania ołowiu w tych układach i narządach pojawiają się u osób dorosłych, gdy stężenie ołowiu we krwi wynosi około 300 ug/L lub nawet poniżej tej wartości. U dzieci działanie ołowiu na ośrodkowy układ nerwowy jest bezprogowe. Ołów został uznany przez IARC za czynnik o udowodnionym działaniu rakotwórczym dla zwierząt i prawdopodobnie rakotwórczym dla ludzi (grupa 2A). Zgodnie z powszechnie zaakceptowaną opinią, podstawę oceny narażenia na ołów powinna stanowić wartość dopuszczalnego stężenia w materiale biologicznym (DSB). Aktualne dane wskazują na możliwy wpływ ołowiu na nerki oraz układy: nerwowy, krwiotwórczy i krążenia, gdy stężenia ołowiu we krwi wynoszą około 300 pg/L. Proponuje się więc zmniejszenie wartości dopuszczalnego stężenia w materiale bio-logicznym (DSB) dla ołowiu do 300 pg B-Pb/L. Wartość ta jest zgodna z zaleceniami ACGIH oraz propozycjami SCOEL i ICOH. Wartość NDS dla ołowiu i jego związków nieorganicznych nie ulega zmianie i wynosi 0,050 mg/m3. W warunkach 8-godzinnego narażenia zawo¬dowego wzrostowi stężenia ołowiu w powietrzu o 1 ng/m3 może odpowiadać wzrost stężeń ołowiu we krwi do 1,9 Hg/L. W związku z tym, narażeniu zawodowemu drogą inhalacyjną na ołów7 o stężeniu równym wartości NDS może odpowiadać przyrost stężenia ołowiu w7e krwi o około 100 ug/L. W Niemczech średnie geometryczne stężenie ołowiu we krwi u osób dorosłych i nienarażonych zawodowo na ołów wynosi 31 ug/L, a wartości referencyjne odpowiadające 95-percentylowi odpowiednio: u kobiet 70 ug/L i u mężczyzn 90 ug/L. W Republice Czeskiej i w7e Francji średnie geome-tryczne stężenia ołowiu w7e krwi wynosiły odpowiednio: 33 i 25,7 ug/ L. Suma stężeń ołowiu we krwi wynikających z narażenia środowisko-wego i zawodowego drogą inhalacyjną nie powinna w związku z tym przekraczać 200 |Jg/L. Przy założeniu, że w środowisku pracy pewne ilości ołowiu mogą się wchłaniać z przewodu pokarmowego, niezależnie od drogi inhalacyjnej, proponowana wartość DSB wynosząca 300 ug/L wydaje się być w pełni uzasadniona. Kobiety w wieku rozrodczym nie powinny pracować w narażeniu na ołów, ze względu na możliwy wpływ związku na rozwój ośrodkowego układu nerwowego płodu. Zgodnie z wymaganiami zawartymi w dyrektywie 98/24/WE, wykonywanie oznaczeń ołowiu we krwi obowiązuje w państwach Unii Europejskiej. Górne ograniczenie wartości stężenia ołowiu we krwi wynosi 700 ug/1, przy czym opieką medyczną powinni zostać objęci pracownicy pracujący w narażeniu na ołów o stężeniach ołowiu we krwi powyżej 400 ug/l. Wartość wiążąca dla ołowiu i jego związków nieorganicznych w powietrzu środowiska pracy zawarta w dyrektywie 98/24 WE wynosi 0,15 mg/ m3.
Lead (Pb, atomic weight 207.19) in inorganic compounds usually has the oxidation state II, but state IV also occurs. Lead is a soft, silvery grey metal. In the Earth's crust it is present in various minerals such as sulfide, carbonate and sulfate. The metallurgy' of lead consists of three separate operations: concentrating ,smelting and refining. Occupational lead exposure occurs in the wide variety of set-tings during primary and secondary lead smelting, working in non-ferrous foundries, production of electric storage batteries, as well as scraping and sanding lead paint. Exposure to lead, both in the occupational and environmental settings decreased significantly during last 20 years. In 2004-2005, in Poland, 3297 persons were exposed to lead in occupational settings in concentrations higher than the Polish OEL amounting to 0.050 pg/m3. In the occupational setting, inhalation is then most significant route of exposure to lead. However, improvements in industry resulted in a reduction of lead concen¬trations in the air, making the gastrointestinal absorption increasingly important. Deposition and absorption of inhaled lead-containing particles are influenced by their size and solubility in w7ater. About 30 - 50% of lead containing parti¬cles is deposited in the lungs. That which is not deposited in alveoli is cleared by the mucociliary escalator and ingested. Only small fraction of ingested lead (about 10 %) in absorbed in adults. Under steady-state conditions, lead in blood is found primarily in the red blood cells (99%). In human adults, approximately 90% of the total body burden is found in the bones. This com¬partment contains two different pools of lead with different turnover rates, trabecular bone (23%) and cortical bone (69%). At the steady state conditions T1/2 of elimination of lead from blood amounts to about one month and from bones to 5 - 10 years. Most of the information on human exposure to lead , and the health effects resulting from it, is based on the lead in blood (B-Pb) levels. At steady state B-Pb reflects a combination of recent lead exposure to that which occurred several years ago. The relationship of B-Pb to air lead (A-Pb) exposure concentrations is as the bridge between A-Pb and possible damage to health of workers. The relationship varied from 0.3 to 1.9 pg/L blood per pg Pb/m’ air. In adults, the health effects of exposure to lead may include inhibition of several enzymes involved in heme synthesis, influence on the functions of the kidney, peripheral and central nervous system, and an increase of blood pressure, which is a significant risk factor for cardiovascular diseases. The threshold for these effects in adults amounts to about 300 pg/L B-Pb. The central nervous system is the main target organ for lead toxicity in children. There is no evidence of a threshold below wTrich lead does not cause neurodevel- opmental toxicity in children. Lead is carcinogenic in animal experiments, but there is only limited evidence for carcinogenicity' in humans (IARC category 2A). Identifying of a blood lead level in workers that would be protective during a working lifetime was necessary for recommending a TLV, because B-Pb values, rather than A-Pb concentrations, were most strongly related to health effects. The recommended BEI of 300 pgL is designed to minimize the possible effects on the mentioned above organs and systems in adults. Certain studies have reported effects at B-Pb below the proposed BEI value. However, the observed effects were transient, did not constitute a decrement in the worker's functional capacity, or was contradicted by other adequately conducted studied. If the steepest slope representing the relationship between B-Pb and A-Pb concentration in the workplace (1.9 pg/L of lead in blood per pg/rn3 air) is used for judging the contribution of airborne concentrations to B-Pb the proposed TLV- TWA of 0.050 mg/ m3 w'ould contribute an airborne, work- related fraction of B-Pb concentration of 95 pg/L. Therefore contributions from community sources and nonairborne workplace contamination should be controllable such that the total B-Pb concentrations could be kept below the BET of 300 pg/L. For example in Germany geometric mean concentration of B-Pb in the general population amounted to 31 pg/L and 95% percentyles to 70 pg/ L in women and 90 pg/ L in men Thus, the persons responsible for occupational hygiene must keep in mind that B-Pb, rather than A-Pb
Źródło:
Podstawy i Metody Oceny Środowiska Pracy; 2014, 2 (80); 111-144
1231-868X
Pojawia się w:
Podstawy i Metody Oceny Środowiska Pracy
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies